Planning under uncertainty in the continuous domain: A generalized belief space approach

作者: Vadim Indelman , Luca Carlone , Frank Dellaert

DOI: 10.1109/ICRA.2014.6907858

关键词: Domain (software engineering)Outcome (probability)Mathematical optimizationRandom variableExternal variableInferenceRobotMathematicsArtificial intelligenceDiscretizationRobotics

摘要: This work investigates the problem of planning under uncertainty, with application to mobile robotics. We propose a probabilistic framework in which robot bases its decisions on generalized belief, is description own state and external variables interest. The approach naturally leads dual-layer architecture: an inner estimation layer, performs inference predict outcome possible decisions, outer decisional layer charge deciding best action undertake. does not discretize or control space, allows continuous domain. Moreover, it relax assumption maximum likelihood observations: predicted measurements are treated as random considered given. Experimental results show that our produces smooth trajectories while maintaining uncertainty within reasonable bounds.

参考文章(32)
Leslie Pack Kaelbling, Tomás Lozano-Pérez, Pre-image Backchaining in Belief Space for Mobile Manipulation international symposium on robotics. pp. 383- 400 ,(2017) , 10.1007/978-3-319-29363-9_22
Geoffrey Hollinger, Gaurav Sukhatme, Sampling-based motion planning for robotic information gathering robotics: science and systems. ,vol. 09, ,(2013) , 10.15607/RSS.2013.IX.051
Gaurav S. Sukhatme, Christian Potthast, Next Best View Estimation With Eye In Hand Camera intelligent robots and systems. ,(2011)
C. Stachniss, D. Hahnel, W. Burgard, Exploration with active loop-closing for FastSLAM intelligent robots and systems. ,vol. 2, pp. 1505- 1510 ,(2004) , 10.1109/IROS.2004.1389609
R. Platt, R. Tedrake, L. Kaelbling, T. Lozano-Perez, Belief space planning assuming maximum likelihood observations robotics science and systems. ,vol. 06, ,(2010) , 10.15607/RSS.2010.VI.037
Cyrill Stachniss, Giorgio Grisetti, Wolfram Burgard, Information Gain-based Exploration Using Rao-Blackwellized Particle Filters robotics science and systems. ,vol. 01, pp. 65- 72 ,(2005) , 10.15607/RSS.2005.I.009
Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John J Leonard, Frank Dellaert, iSAM2: Incremental smoothing and mapping using the Bayes tree The International Journal of Robotics Research. ,vol. 31, pp. 216- 235 ,(2012) , 10.1177/0278364911430419
Michail Kontitsis, Evangelos A. Theodorou, Emanuel Todorov, Multi-robot active SLAM with relative entropy optimization american control conference. pp. 2757- 2764 ,(2013) , 10.1109/ACC.2013.6580252
K Konolige, G Grisetti, Rainer Kümmerle, W Burgard, B Limketkai, R Vincent, Efficient Sparse Pose Adjustment for 2D mapping intelligent robots and systems. pp. 22- 29 ,(2010) , 10.1109/IROS.2010.5649043
Jonathan Binney, Gaurav S. Sukhatme, Branch and bound for informative path planning international conference on robotics and automation. pp. 2147- 2154 ,(2012) , 10.1109/ICRA.2012.6224902