A reorthogonalization procedure for modified Gram–Schmidt algorithm based on a rank-k update

作者: Julien Langou , Luc Giraud , Serge Gratton

DOI:

关键词: Matrix (mathematics)Machine epsilonFloating pointMathematicsAlgorithmA priori and a posterioriLinear systemRank (linear algebra)OrthogonalitySet (abstract data type)

摘要: The modified Gram–Schmidt algorithm is a well–known and widely used procedure to orthogonalize the column vectors of given matrix. When applied ill–conditioned matrices in floating point arithmetic, orthogonality among computed may be lost. In this work, we propose an posteriori reorthogonalization technique based on rank–k update vectors. level set built gets better when k increases finally reaches machine precision for large enough k. rank can tuned advance monitor quality. We illustrate efficiency approach framework Seed–GMRES solution unsymmetric linear system with multiple right–hand sides. particular, report experiments numerical simulations electromagnetic applications where rank–one sufficient recover orthogonal level.

参考文章(15)
Heinz Rutishauser, Description of Algol 60 ,(1967)
N J Higham, MATRIX NEARNESS PROBLEMS AND APPLICATIONS APPLICATIONS OF MATRIX THEORY. 1989;22.. ,vol. 22, ,(1989)
Luc Giraud, Julien Langou, When modified Gram–Schmidt generates a well‐conditioned set of vectors Ima Journal of Numerical Analysis. ,vol. 22, pp. 521- 528 ,(2002) , 10.1093/IMANUM/22.4.521
Åke Björck, Solving linear least squares problems by Gram-Schmidt orthogonalization Bit Numerical Mathematics. ,vol. 7, pp. 1- 21 ,(1967) , 10.1007/BF01934122
Ky Fan, A. J. Hoffman, Some metric inequalities in the space of matrices Proceedings of the American Mathematical Society. ,vol. 6, pp. 111- 116 ,(1955) , 10.1090/S0002-9939-1955-0067841-7
A. Greenbaum, M. Rozložník, Z. Strakoš, Numerical behaviour of the modified gram-schmidt GMRES implementation Bit Numerical Mathematics. ,vol. 37, pp. 706- 719 ,(1997) , 10.1007/BF02510248
John R. Rice, Experiments on Gram-Schmidt orthogonalization Mathematics of Computation. ,vol. 20, pp. 325- 328 ,(1966) , 10.1090/S0025-5718-1966-0192673-4
J. H. Wilkinson, The algebraic eigenvalue problem ,(1965)
Å. Björck, C. C. Paige, Loss and recapture of orthogonality in the modified Gram-Schmidt algorithm SIAM Journal on Matrix Analysis and Applications. ,vol. 13, pp. 176- 190 ,(1992) , 10.1137/0613015