Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic-Organic Hybrid Photonic Integration

作者: Yi Zou , Loise Moreel , Hongtao Lin , Jie Zhou , Lan Li

DOI: 10.1002/ADOM.201400068

关键词: Chalcogenide glassRefractive indexThin filmOptoelectronicsFabricationResistPhotonicsMaterials scienceSemiconductorDiffraction grating

摘要: Organic polymer materials are widely credited with extreme versatility for thin film device processing. However, they generally lack the high refractive indices of inorganic semiconductors essential tight optical confinement in planar integrated photonic circuits. Inorganic–organic hybrid systems overcome these limits by combining both types materials, although such integration remains challenging given vastly different properties two materials. In this paper, a new approach is used to realize inorganic–organic photonics using chalcogenide glass (ChG) Known as an amorphous semiconductor, possesses indices, and can be prepared form through solution deposition patterned via direct thermal nanoimprinting, processing methods traditionally exclusive only. Sub-micrometer waveguides, microring resonators, diffraction gratings fabricated from processed (SP) ChG films monolithically organic substrates create mechanically flexible, high-index-contrast devices. The resonators exhibit quality factor (Q-factor) 80 000 near 1550 nm wavelength. Free-standing, flexible whose readily tailored conformal on nonplanar surfaces also demonstrated.

参考文章(46)
Colin Stuart, Yong Chen, Roll in and roll out: a path to high-throughput nanoimprint lithography. ACS Nano. ,vol. 3, pp. 2062- 2064 ,(2009) , 10.1021/NN9008356
Candice Tsay, Yunlai Zha, Craig B. Arnold, Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides. Optics Express. ,vol. 18, pp. 26744- 26753 ,(2010) , 10.1364/OE.18.026744
M. Solmaz, H. Park, C. K. Madsen, X. Cheng, Patterning chalcogenide glass by direct resist-free thermal nanoimprint Journal of Vacuum Science & Technology B. ,vol. 26, pp. 606- 610 ,(2008) , 10.1116/1.2890699
Shyam Singh, Diffraction gratings: aberrations and applications Optics and Laser Technology. ,vol. 31, pp. 195- 218 ,(1999) , 10.1016/S0030-3992(99)00019-5
M. Silvennoinen, K. Paivasaari, J.J.J. Kaakkunen, V.K. Tikhomirov, A. Lehmuskero, P. Vahimaa, V.V. Moshchalkov, Imprinting the nanostructures on the high refractive index semiconductor glass Applied Surface Science. ,vol. 257, pp. 6829- 6832 ,(2011) , 10.1016/J.APSUSC.2011.03.007
Makoto Yoshida, Paras N. Prasad, Sol−Gel-Processed SiO2/TiO2/Poly(vinylpyrrolidone) Composite Materials for Optical Waveguides Chemistry of Materials. ,vol. 8, pp. 235- 241 ,(1996) , 10.1021/CM950331O
Changli Lü, Zhanchen Cui, Zuo Li, Bai Yang, Jiacong Shen, High refractive index thin films of ZnS/polythiourethane nanocomposites Journal of Materials Chemistry. ,vol. 13, pp. 526- 530 ,(2003) , 10.1039/B208850A
Candice Tsay, Fatima Toor, Claire F. Gmachl, Craig B. Arnold, Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits Optics Letters. ,vol. 35, pp. 3324- 3326 ,(2010) , 10.1364/OL.35.003324
Tatsuo Harada, Toshiaki Kita, Mechanically ruled aberration-corrected concave gratings Applied Optics. ,vol. 19, pp. 3987- 3993 ,(1980) , 10.1364/AO.19.003987
Itsunari Yamada, Naoto Yamashita, Kunihiko Tani, Toshihiko Einishi, Mitsunori Saito, Kouhei Fukumi, Junji Nishii, Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass Optics Letters. ,vol. 36, pp. 3882- 3884 ,(2011) , 10.1364/OL.36.003882