Anti-perturbation of Online Social Networks by Graph Label Transition.

作者: Mohammad A. I. Hasan , Jun Zhuang

DOI:

关键词: Social networkMachine learningComputer scienceArtificial intelligenceClassifier (UML)Graph

摘要: Numerous popular online social networks (OSN) would classify users into different categories and recommend users to each other with similar interests. A small number of …

参考文章(48)
Arthur Szlam, Yann LeCun, Joan Bruna, Wojciech Zaremba, Spectral Networks and Locally Connected Networks on Graphs arXiv: Learning. ,(2013)
Christopher M. Bishop, Pattern Recognition and Machine Learning ,(2006)
Manohar Paluri, Sainbayar Sukhbaatar, Joan Bruna, Rob Fergus, Lubomir Bourdev, Training Convolutional Networks with Noisy Labels arXiv: Computer Vision and Pattern Recognition. ,(2014)
Tong Xiao, Tian Xia, Yi Yang, Chang Huang, Xiaogang Wang, Learning from massive noisy labeled data for image classification computer vision and pattern recognition. pp. 2691- 2699 ,(2015) , 10.1109/CVPR.2015.7298885
Christian Szegedy, Dragomir Anguelov, Honglak Lee, Andrew Rabinovich, Dumitru Erhan, Scott E. Reed, Training Deep Neural Networks on Noisy Labels with Bootstrapping arXiv: Computer Vision and Pattern Recognition. ,(2014)
Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, Tina Eliassi-Rad, Collective Classification in Network Data Ai Magazine. ,vol. 29, pp. 93- 106 ,(2008) , 10.1609/AIMAG.V29I3.2157
Max Welling, Thomas N. Kipf, Semi-Supervised Classification with Graph Convolutional Networks arXiv: Learning. ,(2016)
Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin, Abhinav Gupta, Serge Belongie, Learning from Noisy Large-Scale Datasets with Minimal Supervision 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 6575- 6583 ,(2017) , 10.1109/CVPR.2017.696
Jure Leskovec, William L. Hamilton, Rex Ying, Inductive Representation Learning on Large Graphs arXiv: Social and Information Networks. ,(2017)
Jose M. F. Moura, Soummya Kar, Jian Du, Shanghang Zhang, Guanhang Wu, Topology Adaptive Graph Convolutional Networks arXiv: Learning. ,(2017)