Numerical Instruments for the Analysis of Secular Dynamics of Exoplanetary Systems

作者: A. V. Mel’nikov

DOI: 10.1134/S0038094618050064

关键词: Numerical analysisOrbital mechanicsPhysicsLyapunov functionPlanetary systemEccentricity (behavior)Orbital elementsLyapunov exponentLyapunov timeStatistical physics

摘要: A review is given of modern numerical methods for the analysis resonant and chaotic dynamics: calculation Lyapunov characteristic exponents, MEGNO method, maximum eccentricity method. These are used to construct stability diagrams planetary systems γ Cep, HD 196885, 41004. The analyzed determine most probable values taken by orbital parameters exoplanets obtain estimates time their dynamics. constructed using different compared analyze effectiveness in study secular dynamics exoplanetary systems.

参考文章(52)
CLAUDE FROESCHLÉ, ELENA LEGA, ROBERT GONCZI, FAST LYAPUNOV INDICATORS. APPLICATION TO ASTEROIDAL MOTION Celestial Mechanics and Dynamical Astronomy. ,vol. 67, pp. 41- 62 ,(1997) , 10.1023/A:1008276418601
Alessandro Morbidelli, Modern celestial mechanics : aspects of solar system dynamics Modern celestial mechanics : aspects of solar system dynamics. ,(2002)
Jacques Laskar, Frequency map analysis and quasiperiodic decompositions arXiv: Dynamical Systems. ,(2003)
Stanley F. Dermott, Carl D. Murray, Solar system dynamics ,(1999)
I. I. Shevchenko, V. V. Kouprianov, On the chaotic rotation of planetary satellites: The Lyapunov spectra and the maximum Lyapunov exponents Astronomy and Astrophysics. ,vol. 394, pp. 663- 674 ,(2002) , 10.1051/0004-6361:20021147
Giancarlo Benettin, Luigi Galgani, Jean-Marie Strelcyn, Kolmogorov entropy and numerical experiments Physical Review A. ,vol. 14, pp. 2338- 2345 ,(1976) , 10.1103/PHYSREVA.14.2338
Hubertus F. von Bremen, Firdaus E. Udwadia, Wlodek Proskurowski, An efficient QR based method for the computation of Lyapunov exponents Physica D: Nonlinear Phenomena. ,vol. 101, pp. 1- 16 ,(1997) , 10.1016/S0167-2789(96)00216-3
S. Satyal, T. C. Hinse, B. Quarles, J. P. Noyola, Chaotic dynamics of the planet in HD 196885 AB Monthly Notices of the Royal Astronomical Society. ,vol. 443, pp. 1310- 1318 ,(2014) , 10.1093/MNRAS/STU1221
Giancarlo Benettin, Luigi Galgani, Antonio Giorgilli, Jean-Marie Strelcyn, Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application Meccanica. ,vol. 15, pp. 21- 30 ,(1980) , 10.1007/BF02128237
P.M. Cincotta, C.M. Giordano, C. Simó, Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits Physica D: Nonlinear Phenomena. ,vol. 182, pp. 151- 178 ,(2003) , 10.1016/S0167-2789(03)00103-9