A Primal-Dual Interior-Point Method to Solve the Optimal Power Flow Dispatching Problem

作者: Rabih A. Jabr

DOI: 10.1023/B:OPTE.0000005390.63406.1E

关键词: AlgorithmMathematicsNonlinear systemLinear programmingLine searchInterior point methodMathematical optimizationPath (graph theory)Linear systemCentringHomotopy

摘要: This paper presents a primal-dual path-following interior-point method for the solution of optimal power flow dispatching (OPFD) problem. The underlying idea most algorithms is relatively similar: starting from Fiacco-McCormick barrier function, define central path and loosely follow it to optimum solution. Several methods OPF have been suggested, all which are essentially direct extensions linear programming. Nevertheless, there substantial variations in some crucial details include formulation non-linear problem, associated system, algebraic procedure solve this line search, strategies adjusting centring parameter, estimating higher order correction terms homotopy path, treatment indefiniteness. discusses approaches that were undertaken implementing specific OPFD. A comparison carried out with previous research on OPF. Numerical tests standard IEEE systems realistic network very encouraging show new algorithm converges where other fail.

参考文章(30)
R. M. Chamberlain, M. J. D. Powell, C. Lemarechal, H. C. Pedersen, The watchdog technique for forcing convergence in algorithms for constrained optimization Mathematical Programming Studies. pp. 1- 17 ,(1982) , 10.1007/BFB0120945
John J. Grainger, Gary W. Chang, William D. Stevenson, Power System Analysis ,(1994)
Robert J. Vanderbei, David F. Shanno, An Interior-Point Algorithm for Nonconvex Nonlinear Programming Computational Optimization and Applications. ,vol. 13, pp. 231- 252 ,(1999) , 10.1023/A:1008677427361
Stephen J. Wright, Primal-Dual Interior-Point Methods ,(1987)
David M. Gay, Michael L. Overton, Margaret H. Wright, A Primal-dual Interior Method for Nonconvex Nonlinear Programming Springer, Boston, MA. pp. 31- 56 ,(1998) , 10.1007/978-1-4613-3335-7_2
J. Gondzio, C. Meszaros, E.D. Andersen, X. Xu, Implementation of Interior Point Methods for Large Scale Linear Programming Research Papers in Economics. ,(1996)
David Sun, Bruce Ashley, Brian Brewer, Art Hughes, William Tinney, Optimal Power Flow By Newton Approach IEEE Power & Energy Magazine. ,vol. 103, pp. 2864- 2880 ,(1984) , 10.1109/TPAS.1984.318284
Irvin J. Lustig, Roy E. Marsten, David F. Shanno, ON IMPLEMENTING MEHROTRA'S PREDICTOR-CORRECTOR INTERIOR-POINT METHOD FOR LINEAR PROGRAMMING* Siam Journal on Optimization. ,vol. 2, pp. 435- 449 ,(1992) , 10.1137/0802022
Joseph E. Pasciak, Alan George, Joseph W. Liu, Computer solution of large sparse positive definite systems Mathematics of Computation. ,vol. 39, pp. 305- ,(1982) , 10.2307/2007640
David F. Shanno, Robert J. Vanderbei, Interior-point methods for nonconvex nonlinear programming: Orderings and higher-order methods Mathematical Programming. ,vol. 87, pp. 303- 316 ,(2000) , 10.1007/S101070050116