Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations

作者: Pavlo O. Dral , O. Anatole von Lilienfeld , Walter Thiel

DOI: 10.1021/ACS.JCTC.5B00141

关键词: Range (mathematics)Quantum chemicalMoleculeQuantum chemistryTransferabilityAb initioSet (abstract data type)Machine learningMolecular descriptorComputer scienceArtificial intelligence

摘要: We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through use machine learning (ML) models for parameters. For a given class compounds, ML techniques require sufficiently large training sets to develop that can be used adapting SQC parameters reflect changes molecular composition and geometry. The ML-SQC approach allows automatic tuning individual molecules, thereby improving without deteriorating transferability molecules with descriptors very different from those set. performance this is demonstrated OM2 method using set 6095 constitutional isomers C7H10O2, which accurate ab initio atomization enthalpies are available. ML-OM2 results show improved average much reduced error range compared standard results, mean absolute errors dropping 6.3 1.7 kcal/mol. They also found superior specific reparameterizations (rOM2) same isomers. thus holds promise fast reasonably high-throughput screening materials molecules.

参考文章(30)
Thomas Harvey Rowan, Functional stability analysis of numerical algorithms University of Texas at Austin. ,(1990)
Lusann Yang, Gerbrand Ceder, Data-mined similarity function between material compositions Physical Review B. ,vol. 88, pp. 224107- ,(2013) , 10.1103/PHYSREVB.88.224107
Gabor Csányi, T. Albaret, M. C. Payne, A. De Vita, "Learn on the fly": a hybrid classical and quantum-mechanical molecular dynamics simulation. Physical Review Letters. ,vol. 93, pp. 175503- ,(2004) , 10.1103/PHYSREVLETT.93.175503
Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, Kristin A Persson, None, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation APL Materials. ,vol. 1, pp. 011002- 011002 ,(2013) , 10.1063/1.4812323
Katja Hansen, Grégoire Montavon, Franziska Biegler, Siamac Fazli, Matthias Rupp, Matthias Scheffler, O. Anatole von Lilienfeld, Alexandre Tkatchenko, Klaus-Robert Müller, Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies Journal of Chemical Theory and Computation. ,vol. 9, pp. 3404- 3419 ,(2013) , 10.1021/CT400195D
Gisbert Schneider, Virtual screening: an endless staircase? Nature Reviews Drug Discovery. ,vol. 9, pp. 273- 276 ,(2010) , 10.1038/NRD3139
Wanding Zhou, Luay Nakhleh, Quantifying and assessing the effect of chemical symmetry in metabolic pathways. Journal of Chemical Information and Modeling. ,vol. 52, pp. 2684- 2696 ,(2012) , 10.1021/CI300259U
J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Towards the computational design of solid catalysts Nature Chemistry. ,vol. 1, pp. 37- 46 ,(2009) , 10.1038/NCHEM.121