On the approximation of solutions of the generalized Korteweg-de Vries-Burger's equation

作者: Ohannes Karakashian , William McKinney

DOI: 10.1016/0378-4754(94)00027-1

关键词: Partial differential equationDiscretizationAsymptotically optimal algorithmKorteweg–de Vries equationNewton's methodRate of convergenceMathematical analysisTemporal discretizationNonlinear systemMathematics

摘要: Abstract We propose numerical schemes for approximating periodic solutions of the generalized Korteweg—de Vries—Burgers equation. These are based on a Galerkin-finite element formulation spatial discretization and use implicit Runge—Kutta (IRK) methods time stepping. Asymptotically optimal rate convergence estimates can be obtained in terms temporal parameters. In particular, rates classical ones, i.e. no order reduction occurs. also apply Newton's method, to solve system nonlinear equations. Indeed, method yields iterants that converge quadratically preserves convergence.

参考文章(7)
Ohannes Karakashian, William McKinney, On optimal high-order in time approximations for the Korteweg-de Vries equation Mathematics of Computation. ,vol. 55, pp. 473- 496 ,(1990) , 10.1090/S0025-5718-1990-1035935-4
Vidar Thomée, Burton Wendroff, Convergence Estimates for Galerkin Methods for Variable Coefficient Initial Value Problems SIAM Journal on Numerical Analysis. ,vol. 11, pp. 1059- 1068 ,(1974) , 10.1137/0711081
Garth A. Baker, Vassilios A. Dougalis, Ohannes A. Karakashian, Convergence of Galerkin Approximations for the Korteweg-de Vries Equation, Mathematics of Computation. ,vol. 40, pp. 419- 433 ,(1983) , 10.1090/S0025-5718-1983-0689464-4
Vassilios A. Dougalis, Ohannes A. Karakashian, On some high-order accurate fully discrete Galerkin methods for the Korteweg-de Vries equation Mathematics of Computation. ,vol. 45, pp. 329- 345 ,(1985) , 10.1090/S0025-5718-1985-0804927-8
The Initial-Value Problem for the Korteweg-De Vries Equation Philosophical transactions - Royal Society. Mathematical, physical and engineering sciences. ,vol. 278, pp. 555- 601 ,(1975) , 10.1098/RSTA.1975.0035
Conservative, High-Order Numerical Schemes for the Generalized Korteweg-de Vries Equation Philosophical Transactions of the Royal Society A. ,vol. 351, pp. 107- 164 ,(1995) , 10.1098/RSTA.1995.0027