作者: Ohannes Karakashian , William McKinney
DOI: 10.1016/0378-4754(94)00027-1
关键词: Partial differential equation 、 Discretization 、 Asymptotically optimal algorithm 、 Korteweg–de Vries equation 、 Newton's method 、 Rate of convergence 、 Mathematical analysis 、 Temporal discretization 、 Nonlinear system 、 Mathematics
摘要: Abstract We propose numerical schemes for approximating periodic solutions of the generalized Korteweg—de Vries—Burgers equation. These are based on a Galerkin-finite element formulation spatial discretization and use implicit Runge—Kutta (IRK) methods time stepping. Asymptotically optimal rate convergence estimates can be obtained in terms temporal parameters. In particular, rates classical ones, i.e. no order reduction occurs. also apply Newton's method, to solve system nonlinear equations. Indeed, method yields iterants that converge quadratically preserves convergence.