High-temperature compressive creep of liquid phase sintered silicon carbide

作者: A. Gallardo-López , A. , Muñoz , A. , Martínez-Fernández

DOI: 10.1016/S1359-6454(99)00072-5

关键词: MetallurgyActivation energySiliconSilicon carbideComposite materialDislocationGrain Boundary SlidingLattice diffusion coefficientElectron diffractionCreepMaterials science

摘要: Creep of liquid phase sintered SiC has been studied at temperatures between 1,575 and 1,700 C in argon under nominal stresses from 90 to 500 MPa. rates ranged 3 {times} 10{sup {minus}8} {minus}6}/s, with an activation energy 840 {+-} 100 kJ/mol (corresponding carbon silicon self-diffusion), a stress exponent 1.6 0.2. The crept samples showed the presence dislocation activity, generally forming glide bands tangles. Degradation mechanical properties due cavitation or reaction additives was not detected. SEM TEM microstructural characterization analysis creep parameters leads conclusion that mechanisms operating are grain boundary sliding accommodated by lattice diffusion climb-controlled parallel. Other possible discussed data compared published data.

参考文章(29)
James D. Cawley, Charles E. Semler, Silicon carbide '87 American Ceramic Society. ,(1989)
W. Roger Cannon, Terence G. Langdon, Creep of ceramics Journal of Materials Science. ,vol. 23, pp. 1- 20 ,(1988) , 10.1007/BF01174028
Terence G. Langdon, The physics of superplastic deformation Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 137, pp. 1- 11 ,(1991) , 10.1016/0921-5093(91)90312-B
M. H. Hon, R. F. Davis, D. E. Newbury, Self-diffusion of 30Si in polycrystalline ?-SiC Journal of Materials Science. ,vol. 15, pp. 2073- 2080 ,(1980) , 10.1007/BF00550634
M.F Ashby, R.A Verrall, Diffusion-accommodated flow and superplasticity Acta Metallurgica. ,vol. 21, pp. 149- 163 ,(1973) , 10.1016/0001-6160(73)90057-6
M. Backhaus-Ricoult, N. Mozdzierz, P. Eveno, Impurities in silicon carbide ceramics and their role during high temperature creep Journal De Physique Iii. ,vol. 3, pp. 2189- 2210 ,(1993) , 10.1051/JP3:1993269
C. H. CARTER, R. F. DAVIS, J. BENTLEY, Kinetics and Mechanisms of High-Temperature Creep in Silicon Carbide. II. Chemically Vapor Deposited, Journal of the American Ceramic Society. ,vol. 67, pp. 732- 740 ,(1984) , 10.1111/J.1151-2916.1984.TB19510.X
J. Weertman, Theory of Steady‐State Creep Based on Dislocation Climb Journal of Applied Physics. ,vol. 26, pp. 1213- 1217 ,(1955) , 10.1063/1.1721875
Chi -Ming Hong, Delbert E. Day, Thermally stimulated polarization and depolarization current (TSPC/TSDC) techniques for studying ion motion in glass Journal of Materials Science. ,vol. 14, pp. 2493- 2499 ,(1979) , 10.1007/BF00737040