Mid-Level Vision Processes for Automatic Building Extraction

作者: Wolfgang Förstner

DOI: 10.1007/978-3-0348-9242-1_17

关键词: Selection (linguistics)CollinearityOptimal estimationData miningNoise (video)Range (mathematics)Set (psychology)InferenceMathematicsImage (mathematics)

摘要: Mid-level processes in vision are understood to produce structured descriptions of images without relying on very specific semantic scene knowledge. Automatic building extraction can use geometric models a large extent. Geometric hypotheses may be inferred from the given data 2D or 3D and represent elementary constraints as incidence collinearity more relations symmetries. The hypothesis lead difficulties during spatial inference due noise inconsistent mutually dependent constraints. paper discusses selection not-contradicting via robust estimation set independent prerequisite for an optimal objects shape. Examples analysis image range given.

参考文章(5)
Wolfgang Förstner, A Framework for Low Level Feature Extraction european conference on computer vision. pp. 383- 394 ,(1994) , 10.1007/BFB0028370
Ansgar Brunn, Uwe Weidner, Wolfgang Förstner, Model-Based 2D-Shape Recovery Mustererkennung 1995, 17. DAGM-Symposium. pp. 260- 268 ,(1995) , 10.1007/978-3-642-79980-8_31
Jack Edmonds, Matroids and the greedy algorithm Mathematical Programming. ,vol. 1, pp. 127- 136 ,(1971) , 10.1007/BF01584082
C. Fuchs, W. Forstner, Polymorphic grouping for image segmentation Proceedings of IEEE International Conference on Computer Vision. pp. 175- 182 ,(1995) , 10.1109/ICCV.1995.466789