Two new regularized AdaBoost algorithms

作者: Yijun Sun , Jian Li , W. Hager

DOI: 10.1109/ICMLA.2004.1383492

关键词: AdaBoostOverfittingMachine learningLinear approximationBoosting (machine learning)BrownBoostAlgorithm designComputer scienceArtificial intelligenceAlgorithm

摘要: … that our soft margin … margin plots of three methods: AdaBoost, AdaBoostnorm2 and AdaBoostKL based on one realization of the waveform data. AdaBoost tries to maximize the margin of …

参考文章(24)
G Rätsch, Bernhard Schölkopf, Alexander J Smola, Sebastian Mika, Takashi Onoda, Klaus-Robert Müller, Robust Ensemble Learning MIT Press. pp. 207- 220 ,(2000)
Robert E. Schapire, Theoretical Views of Boosting and Applications algorithmic learning theory. pp. 13- 25 ,(1999) , 10.1007/3-540-46769-6_2
G. Rätsch, T. Onoda, K.-R. Müller, Soft Margins for AdaBoost Machine Learning. ,vol. 42, pp. 287- 320 ,(2001) , 10.1023/A:1007618119488
Robert E. Schapire, Yoav Freund, Wee Sun Lee, Peter Barlett, Boosting the margin: A new explanation for the effectiveness of voting methods international conference on machine learning. pp. 322- 330 ,(1997)
Peter Bartlett, M Frean, Llew Mason, Jon Baxter, Functional Gradient Techniques for Combining Hypotheses MIT Press. pp. 221- 246 ,(2000)
Ayhan Demiriz, Kristin P. Bennett, John Shawe-Taylor, Linear Programming Boosting via Column Generation Machine Learning. ,vol. 46, pp. 225- 254 ,(2002) , 10.1023/A:1012470815092
Ivar Ekeland, Roger Téman, Convex analysis and variational problems ,(1976)
Yoav Freund, An Adaptive Version of the Boost by Majority Algorithm Machine Learning. ,vol. 43, pp. 293- 318 ,(2001) , 10.1023/A:1010852229904
Robert E. Schapire, Yoav Freund, Peter Bartlett, Wee Sun Lee, Boosting the margin: a new explanation for the effectiveness of voting methods Annals of Statistics. ,vol. 26, pp. 1651- 1686 ,(1998) , 10.1214/AOS/1024691352
Jyrki Kivinen, Manfred K. Warmuth, Boosting as entropy projection conference on learning theory. pp. 134- 144 ,(1999) , 10.1145/307400.307424