Dynamical Properties of Quasi-periodic Schrödinger Equations

作者: Kristian Bjerklöv

DOI:

关键词: Operator (physics)Flow (mathematics)Spectrum (functional analysis)PhysicsMeasure (mathematics)Quasiperiodic functionLyapunov exponentFundamental solutionSchrödinger equationPure mathematics

摘要: This thesis deals with the investigation of dynamical properties quasiperiodic Schrodinger equations. It contains following two papers: Paper I. Positive Lyapunov exponent for a class 1-D equations — discrete case. For nonconstant C1 potential function V : T → R and large λ, we prove that an almost full measure set irrational frequencies ω ∈ energies E R, all lying in spectrum operator (Hθu)n = −(un+1 + un−1) λV (θ nω)un, (maximal) associated equation Hθu Eu, is positive. Moreover, these energies, projective flow corresponding to fundamental solution system ( un un+1 ) 0 1 −1 nω) −E )( un−1 , shown be minimal. II. continuum We bottom (Hθu)(t) − d2 dt2 u(t) (t, θ ωt)u(t), positive \ Q, provided λ T2 satisfies some regularity conditions. also u u′ )′ ωt) obtained from minimal cases.

参考文章(23)
R. Shankar, The Harmonic Oscillator Springer, New York, NY. pp. 185- 221 ,(1994) , 10.1007/978-1-4757-0576-8_7
Alan J. Laub, Sergio Bittanti, Jan C. Willems, The Riccati Equation ,(1991)
M. A. Shubin, F. A. Berezin, The Schrödinger Equation ,(1991)
J. Bourgain, S. Jitomirskaya, Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential Journal of Statistical Physics. ,vol. 108, pp. 1203- 1218 ,(2002) , 10.1023/A:1019751801035
Russell A. Johnson, Lyapounov numbers for the almost periodic Schrodinger equation Illinois Journal of Mathematics. ,vol. 28, pp. 397- 419 ,(1984) , 10.1215/IJM/1256046068
E. I. Dinaburg, Ya. G. Sinai, The one-dimensional Schrödinger equation with a quasiperiodic potential Functional Analysis and Its Applications. ,vol. 9, pp. 279- 289 ,(1976) , 10.1007/BF01075873
Alexander Fedotov, Frédéric Klopp, Anderson Transitions for a Family of Almost Periodic Schrödinger Equations in the Adiabatic Case Communications in Mathematical Physics. ,vol. 227, pp. 1- 92 ,(2002) , 10.1007/S002200200612
Russell A Johnson, On a Floquet theory for almost-periodic, two-dimensional linear systems Journal of Differential Equations. ,vol. 37, pp. 184- 205 ,(1980) , 10.1016/0022-0396(80)90094-7
J. Fröhlich, T. Spencer, P. Wittwer, Localization for a class of one-dimensional quasi-periodic Schrödinger operators Communications in Mathematical Physics. ,vol. 132, pp. 5- 25 ,(1990) , 10.1007/BF02277997