From random to self-avoiding walks

作者: Cyril Domb

DOI: 10.1007/BF01012316

关键词: Universality (dynamical systems)Discrete mathematicsQuantum walkMathematicsLoop-erased random walkHeterogeneous random walk in one dimensionRandom walkConjectureCritical phenomenaSelf-avoiding walk

摘要: A brief review will be given of the current situation in theory self-avoiding walks (SAWs). The Domb-Joyce model first introduced 1972 consists a random walk on lattice which eachN step configuration has weighting factor Π i=0 N−2 Πj=i+2/N(1−ωδij). Herei andj are sites occupied by ith and jth points walk. When ω=0 reduces to standard walk, when ω=1 it is universality hypothesis critical phenomena used conjecture behavior as function ofω for largeN. implications dilute polymer solutions indicated.

参考文章(19)
Hiromi Yamakawa, Modern Theory of Polymer Solutions Harper & Row. pp. 1- 434 ,(1971)
S Havlin, D Ben-Avraham, Fractal dimensionality of polymer chains Journal of Physics A. ,vol. 15, ,(1982) , 10.1088/0305-4470/15/6/011
Virial expansion for a polymer chain: the two parameter approximation Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 367, pp. 143- 174 ,(1979) , 10.1098/RSPA.1979.0081
Elliott W. Montroll, George H. Weiss, Random Walks on Lattices. II Journal of Mathematical Physics. ,vol. 6, pp. 167- 181 ,(1965) , 10.1063/1.1704269
C Domb, P J Ratcliffe, Virial expansion of a two-dimensional polymer chain: cancellation of logarithmic terms Journal of Physics A: Mathematical and General. ,vol. 14, pp. L373- L375 ,(1981) , 10.1088/0305-4470/14/9/011
R. Balian, G. Toulouse, Critical Exponents for Transitions withn=−2Components of the Order Parameter Physical Review Letters. ,vol. 30, pp. 544- 546 ,(1973) , 10.1103/PHYSREVLETT.30.544
S. Havlin, D. Ben-Avraham, Theoretical and numerical study of fractal dimensionality in self-avoiding walks Physical Review A. ,vol. 26, pp. 1728- 1734 ,(1982) , 10.1103/PHYSREVA.26.1728
C Domb, G S Joyce, Cluster expansion for a polymer chain Journal of Physics C: Solid State Physics. ,vol. 5, pp. 956- 976 ,(1972) , 10.1088/0022-3719/5/9/009
S F Edwards, A note on the convergence of perturbation theory in polymer problems Journal of Physics A. ,vol. 8, pp. 1171- 1177 ,(1975) , 10.1088/0305-4470/8/7/021