Empirical determination of universal multifractal exponents in turbulent velocity fields.

作者: F. Schmitt , D. La Vallée , D. Schertzer , S. Lovejoy

DOI: 10.1103/PHYSREVLETT.68.305

关键词: Gravitational singularityTrace (linear algebra)TurbulenceHierarchy (mathematics)Computational fluid dynamicsLog-normal distributionMultifractal systemSingularityStatistical physicsPhysics

摘要: It is now apparent that the two principal models of turbulence (the «beta» and «lognormal» models) are extremes a continuous family (stable, attractive, hence «universal») multifractals characterized by Levy indices α=0 2, respectively. Using technique called double trace moment analysis, turbulent velocity data, we empirically obtain α≃1.3±0.1: As has long been suspected, really «in between» β lognormal models. This describes entire hierarchy singularities Navier-Stokes equations

参考文章(13)
Uriel Frisch, Pierre-Louis Sulem, Mark Nelkin, A simple dynamical model of intermittent fully developed turbulence Journal of Fluid Mechanics. ,vol. 87, pp. 719- 736 ,(1978) , 10.1017/S0022112078001846
C. Meneveau, K. R. Sreenivasan, Simple multifractal cascade model for fully developed turbulence. Physical Review Letters. ,vol. 59, pp. 1424- 1427 ,(1987) , 10.1103/PHYSREVLETT.59.1424
Charles Meneveau, K. R. Sreenivasan, The multifractal nature of turbulent energy dissipation Journal of Fluid Mechanics. ,vol. 224, pp. 429- 484 ,(1991) , 10.1017/S0022112091001830
Daniel Schertzer, Shaun Lovejoy, Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes Journal of Geophysical Research. ,vol. 92, pp. 9693- 9714 ,(1987) , 10.1029/JD092ID08P09693
A. M. Obukhov, Some specific features of atmospheric turbulence Journal of Geophysical Research. ,vol. 67, pp. 3011- 3014 ,(1962) , 10.1029/JZ067I008P03011
F. Anselmet, Y. Gagne, E. J. Hopfinger, R. A. Antonia, High-order velocity structure functions in turbulent shear flows Journal of Fluid Mechanics. ,vol. 140, pp. 63- 89 ,(1984) , 10.1017/S0022112084000513
Thomas C. Halsey, Mogens H. Jensen, Leo P. Kadanoff, Itamar Procaccia, Boris I. Shraiman, Fractal measures and their singularities: The characterization of strange sets Physical Review A. ,vol. 33, pp. 1141- 1151 ,(1986) , 10.1103/PHYSREVA.33.1141
Benoit B. Mandelbrot, Fractals in Physics: Squig Clusters, Diffusions, Fractal Measures, and the Unicity of Fractal Dimensionality Journal of Statistical Physics. ,vol. 34, pp. 895- 930 ,(1984) , 10.1007/BF01009448