作者: Guillaume Bal
DOI: 10.1137/S0036141098338855
关键词: Boundary layer 、 Mathematical analysis 、 Dirichlet boundary condition 、 Periodic boundary conditions 、 Mathematics 、 Eigenvalues and eigenvectors 、 Homogenization (chemistry) 、 Neutron transport 、 Diffusion equation 、 Neutron 、 Applied mathematics 、 Analysis 、 Computational mathematics
摘要: We consider the homogenization of criticality eigenvalue problem for even parity flux neutron transport in a domain with isotropic and periodically oscillating coefficients. prove that density is factored product two terms. The first one describes local behavior at cell level. It solution heterogeneous periodic boundary conditions. second term gives global on whole domain. satisfies homogeneous diffusion equation posed Dirichlet also give asymptotic analysis corresponding eigenvalues. This expansion rise to errors order size. does not account leakage core yields unacceptable practice. derive more accurate eigenelements case symmetric cubic layer allows us modified conditio...