Software/Hardware Co-design for Multi-modal Multi-task Learning in Autonomous Systems.

作者: Cong Hao , Deming Chen

DOI:

关键词: Critical path methodSoftwareOptimization problemData pre-processingMulti-task learningSensor fusionComputer scienceField-programmable gate arrayQuality of serviceComputer hardware

摘要: … is called sensor fusion [6], which involves multi-modal learning [… Multimodal machine learning aims to process and relate … for multi-modal sensor fusion with visual and depth information …

参考文章(43)
Mykel J Kochenderfer, Tim A Wheeler, Algorithms for Optimization Applied Optimization. pp. 53- 77 ,(2000) , 10.1007/978-1-4757-3222-1_2
Max Welling, Diederik P Kingma, Auto-Encoding Variational Bayes international conference on learning representations. ,(2014)
Ren C. Luo, Chih Chia Chang, Chun Chi Lai, Multisensor Fusion and Integration: Theories, Applications, and its Perspectives IEEE Sensors Journal. ,vol. 11, pp. 3122- 3138 ,(2011) , 10.1109/JSEN.2011.2166383
Abhinav Gupta, Martial Hebert, Abhinav Shrivastava, Ishan Misra, Cross-stitch Networks for Multi-task Learning arXiv: Computer Vision and Pattern Recognition. ,(2016)
Andriy Mnih, Yee Whye Teh, Chris J. Maddison, The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables international conference on learning representations. ,(2016)
Quoc V. Le, Barret Zoph, Neural Architecture Search with Reinforcement Learning arXiv: Learning. ,(2016)
Deming Chen, Jason Cong, Swathi Gurumani, Wen-mei Hwu, Kyle Rupnow, Zhiru Zhang, Platform choices and design demands for IoT platforms: cost, power, and performance tradeoffs IET Cyber-Physical Systems: Theory & Applications. ,vol. 1, pp. 70- 77 ,(2016) , 10.1049/IET-CPS.2016.0020
Yori Zwols, Daan Wierstra, Alexander Pritzel, Chrisantha Fernando, Charles Blundell, Dylan Banarse, Andrei A. Rusu, David Ha, PathNet: Evolution Channels Gradient Descent in Super Neural Networks arXiv: Neural and Evolutionary Computing. ,(2017)
Tadas Baltrusaitis, Chaitanya Ahuja, Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 41, pp. 423- 443 ,(2019) , 10.1109/TPAMI.2018.2798607
Lukasz Kaiser, Aidan N Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar, Llion Jones, Jakob Uszkoreit, None, One Model To Learn Them All arXiv: Learning. ,(2017)