Application of Modified Amino Acid-Derived Diols as Chain Extenders in the Synthesis of Novel Thermoplastic Polyester–Urethane Elastomers

作者: Ruairí P. Brannigan , Anthony Walder , Andrew P. Dove

DOI: 10.1021/ACSSUSCHEMENG.7B01110

关键词: MonomerElastomerOrganic chemistryThermoplasticPolymer chemistryChemistryDiaminePolyolCyclohexanePolyesterDiol

摘要: Owing to their robust processability and mechanical dexterity, thermoplastic polyurethanes (TPUs) have been utilized in a wide variety of applications from commodity more niche biomedical applications. Despite this, the focus on deriving monomers sustainable resources has relatively low; however, bioderived diisocyanates, diamine/diol chain extenders, polyester-based polyols all studied. Herein we report application biorenewable diol extenders derived amino acids using an organocatalyzed process bulk. To determine effect extender length properties resultant materials, TPEUs were synthesized acids, 1-(1,3-dihydroxypropan-2-yl)-3-ethylurea (C3u), 1-(1,4-dihydroxybutan-2-yl)-4-ethylurea (C4u), 1-(1,5-dihydroxypentan-2-yl)-5-ethylurea (C5u). When poly(e-caprolactone) (PCL) 1-isocyanato-4-[(4-isocyanatocyclohexyl) methyl]cyclohexane (H12MDI) used as polyol diisocyanate, respec...

参考文章(37)
Margaretha Söderqvist Lindblad, Yan Liu, Ann-Christine Albertsson, Elisabetta Ranucci, Sigbritt Karlsson, Polymers from Renewable Resources Advances in Polymer Science. ,vol. 157, pp. 139- 161 ,(2002) , 10.1007/3-540-45734-8_5
Shida Miao, Ping Wang, Zhiguo Su, Songping Zhang, Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomaterialia. ,vol. 10, pp. 1692- 1704 ,(2014) , 10.1016/J.ACTBIO.2013.08.040
Qizhi Chen, Shuling Liang, George A. Thouas, Elastomeric biomaterials for tissue engineering Progress in Polymer Science. ,vol. 38, pp. 584- 671 ,(2013) , 10.1016/J.PROGPOLYMSCI.2012.05.003
Robson F. Storey, Jeffrey S. Wiggins, Kenneth A. Mauritz, Aaron D. Puckett, Bioabsorbable composites. II: Nontoxic, L-lysine-based poly(ester-urethane) matrix composites Polymer Composites. ,vol. 14, pp. 17- 25 ,(1993) , 10.1002/PC.750140104
Maria Ann Woodruff, Dietmar Werner Hutmacher, The return of a forgotten polymer—Polycaprolactone in the 21st century Progress in Polymer Science. ,vol. 35, pp. 1217- 1256 ,(2010) , 10.1016/J.PROGPOLYMSCI.2010.04.002
Jianjun Guan, Michael S. Sacks, Eric J. Beckman, William R. Wagner, Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine Journal of Biomedical Materials Research. ,vol. 61, pp. 493- 503 ,(2002) , 10.1002/JBM.10204
EM Christenson, JM Anderson, A Hiltner, None, Biodegradation mechanisms of polyurethane elastomers Corrosion Engineering Science and Technology. ,vol. 42, pp. 312- 323 ,(2007) , 10.1179/174327807X238909
LH Chan-Chan, C Tkaczyk, RF Vargas-Coronado, JM Cervantes-Uc, M Tabrizian, JV Cauich-Rodriguez, None, Characterization and biocompatibility studies of new degradable poly(urea)urethanes prepared with arginine, glycine or aspartic acid as chain extenders Journal of Materials Science: Materials in Medicine. ,vol. 24, pp. 1733- 1744 ,(2013) , 10.1007/S10856-013-4931-4
S. Calvo, J. Escribano, M. G. Prolongo, R. M. Masegosa, C. Salom, Thermomechanical properties of cured isophtalic polyester resin modified with poly(ε-caprolactone) Journal of Thermal Analysis and Calorimetry. ,vol. 103, pp. 195- 203 ,(2011) , 10.1007/S10973-010-0800-2