Bistability of patterns of synchrony in Kuramoto oscillators with inertia

作者: Igor V. Belykh , Barrett N. Brister , Vladimir N. Belykh

DOI: 10.1063/1.4961435

关键词: Stability (probability)InertiaCurse of dimensionalityPhysicsConstant (mathematics)Cluster (physics)BistabilityDynamics (mechanics)Classical mechanicsPhase (waves)

摘要: We study the co-existence of stable patterns synchrony in two coupled populations identical Kuramoto oscillators with inertia. The have different sizes and can split into clusters where synchronize within a cluster while there is phase shift between dynamics clusters. Due to presence inertia, which increases dimensionality oscillator dynamics, this oscillate, inducing breathing pattern. derive analytical conditions for two-cluster constant oscillating shifts. demonstrate that governs bistability shifts, described by driven pendulum equation. also discuss implications our stability results chimeras.

参考文章(56)
Arkady Pikovsky, Michael Rosenblum, Jürgen Kurths, Synchronization: Phase locking and frequency entrainment ,(2001) , 10.1017/CBO9780511755743
Arkady Pikovsky, Michael Rosenblum, Partially integrable dynamics of hierarchical populations of coupled oscillators. Physical Review Letters. ,vol. 101, pp. 264103- 264103 ,(2008) , 10.1103/PHYSREVLETT.101.264103
Vladimir N. Belykh, Valentin S. Petrov, Grigory V. Osipov, Dynamics of the finite-dimensional Kuramoto model: Global and cluster synchronization Regular and Chaotic Dynamics. ,vol. 20, pp. 37- 48 ,(2015) , 10.1134/S1560354715010037
Vincent Torre, A theory of synchronization of heart pace-maker cells Journal of Theoretical Biology. ,vol. 61, pp. 55- 71 ,(1976) , 10.1016/0022-5193(76)90104-1
Hyunsuk Hong, Hugues Chaté, Hyunggyu Park, Lei-Han Tang, Entrainment transition in populations of random frequency oscillators. Physical Review Letters. ,vol. 99, pp. 184101- ,(2007) , 10.1103/PHYSREVLETT.99.184101
Igor Belykh, Enno de Lange, Martin Hasler, Synchronization of bursting neurons: what matters in the network topology. Physical Review Letters. ,vol. 94, pp. 188101- 188101 ,(2005) , 10.1103/PHYSREVLETT.94.188101
Vladimir N. Belykh, Igor V. Belykh, Erik Mosekilde, Cluster synchronization modes in an ensemble of coupled chaotic oscillators. Physical Review E. ,vol. 63, pp. 036216- 036216 ,(2001) , 10.1103/PHYSREVE.63.036216
Yunjiao Wang, Martin Golubitsky, Two-colour patterns of synchrony in lattice dynamical systems Nonlinearity. ,vol. 18, pp. 631- 657 ,(2005) , 10.1088/0951-7715/18/2/010
Edward Ott, Thomas M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators. Chaos. ,vol. 18, pp. 037113- 037113 ,(2008) , 10.1063/1.2930766
Oleksandr V. Popovych, Yuri L. Maistrenko, Peter A. Tass, Phase chaos in coupled oscillators Physical Review E. ,vol. 71, pp. 065201- ,(2005) , 10.1103/PHYSREVE.71.065201