Hierarchical Multi-classification with Predictive Clustering Trees in Functional Genomics

作者: Jan Struyf , Sašo Džeroski , Hendrik Blockeel , Amanda Clare

DOI: 10.1007/11595014_27

关键词: Hierarchical clusteringMachine learningMulti-task learningDecision treeCluster analysisHierarchical clustering of networksData setFuzzy clusteringArtificial intelligenceMetric (mathematics)Hierarchy (mathematics)Computer science

摘要: This paper investigates how predictive clustering trees can be used to predict gene function in the genome of yeast Saccharomyces cerevisiae. We consider MIPS FunCat classification scheme, which each is annotated with one or more classes selected from a given functional class hierarchy. setting presents two important challenges machine learning: (1) instance labeled set instead just class, and (2) are structured hierarchy; ideally learning algorithm should also take this hierarchical information into account. Predictive generalize decision applied wide range prediction tasks by plugging suitable distance metric. define an appropriate metric for multi-classification present experiments evaluating approach on number data sets that available yeast.

参考文章(17)
Ke Wang, Senqiang Zhou, Shiang Chen Liew, Building Hierarchical Classifiers Using Class Proximity very large data bases. pp. 363- 374 ,(1999)
Luc De Raedt, Hendrik Blockeel, Jan Ramon, Top-Down Induction of Clustering Trees international conference on machine learning. pp. 55- 63 ,(1998)
Christopher M. Bishop, Neural networks for pattern recognition ,(1995)
Pat Langley, Elements of Machine Learning ,(1995)
Richard A Olshen, Charles J Stone, Leo Breiman, Jerome H Friedman, Classification and regression trees ,(1983)
Ljupco Todorovski, Hendrik Blockeel, Saso Dzeroski, Ranking with Predictive Clustering Trees Lecture Notes in Computer Science. ,vol. 2430, pp. 444- 455 ,(2002) , 10.1007/3-540-36755-1_37
Jan Ramon, Maurice Bruynooghe, A polynomial time computable metric between point sets Acta Informatica. ,vol. 37, pp. 765- 780 ,(2001) , 10.1007/PL00013304
Hendrik Blockeel, Luc De Raedt, Top-down induction of first-order logical decision trees Artificial Intelligence. ,vol. 101, pp. 285- 297 ,(1998) , 10.1016/S0004-3702(98)00034-4
J. Ross Quinlan, C4.5: Programs for Machine Learning ,(1992)
Bernard Ženko, Sašo Džeroski, Jan Struyf, Learning predictive clustering rules Lecture Notes in Computer Science. ,vol. 3933, pp. 234- 250 ,(2005) , 10.1007/11733492_14