作者: D. J. Foulis , R. J. Greechie , G. T. R�ttimann
DOI: 10.1007/BF00678545
关键词: Pure mathematics 、 Subalgebra 、 Partially ordered set 、 Proposition 、 Mathematics 、 Algebraic logic 、 Effect algebra 、 Lattice (order) 、 Quantum logic 、 Compactness theorem
摘要: An orthoalgebra, which is a natural generalization of an orthomodular lattice or poset, may be viewed as “logic” “proposition system” and, under welldefined set circumstances, its elements classified according to the Aristotelian modalities: necessary, impossible, possible, and contingent. The necessary propositions band together form local filter, that is, intersects every Boolean subalgebra in filter. In this paper, we give coherent account basic theory Orthoalgebras, define study filters, associated structures, prove version compactness theorem classical algebraic logic.