Fuzzy linear programming using a penalty method

作者: K.David Jamison , Weldon A. Lodwick

DOI: 10.1016/S0165-0114(99)00082-2

关键词: AlgorithmFuzzy associative matrixDefuzzificationFuzzy transportationMathematical optimizationMathematicsMembership functionFuzzy numberFuzzy classificationFuzzy set operationsFuzzy logic

摘要: In this paper we begin with a standard form of the linear programming problem. We replace each constant in problem fuzzy number. then reformat objective and constraints into an unconstrained function by penalizing for possible constraint violations. The range lies space numbers. is redefined as optimizing expected midpoint image function. show that defines concave which, therefore, can be maximized globally. present algorithm finding optimum.

参考文章(17)
F Klawonn, R KRUSE, J GEBHARDT, Foundations of Fuzzy Systems ,(1994)
M. Delgado, J.L. Verdegay, M.A. Vila, A general model for fuzzy linear programming Fuzzy Sets and Systems. ,vol. 29, pp. 21- 29 ,(1989) , 10.1016/0165-0114(89)90133-4
Arnold Kaufmann, Madan M. Gupta, Introduction to fuzzy arithmetic : theory and applications Published in <b>1991</b> in New York NY) by Van Nostrand Reinhold. ,(1991)
Choong Yung Jung, V.A. Pulmano, Improved fuzzy linear programming model for structure designs Computers & Structures. ,vol. 58, pp. 471- 477 ,(1996) , 10.1016/0045-7949(95)00169-H
Benoît Julien, An extension to possibilistic linear programming Fuzzy Sets and Systems. ,vol. 64, pp. 195- 206 ,(1994) , 10.1016/0165-0114(94)90333-6
Heinrich Rommelfanger, Fuzzy linear programming and applications European Journal of Operational Research. ,vol. 92, pp. 512- 527 ,(1996) , 10.1016/0377-2217(95)00008-9
J.J. Buckley, Possibilistic linear programming with triangular fuzzy numbers Fuzzy Sets and Systems. ,vol. 26, pp. 135- 138 ,(1988) , 10.1016/0165-0114(88)90013-9
Kenneth David Jamison, Minimizing Unconstrained Fuzzy Functions Fuzzy Sets and Systems. ,vol. 103, pp. 457- 464 ,(1996) , 10.1016/S0165-0114(97)00183-8