Hamiltonian analysis of SO(4,1)-constrained BF theory

作者: R Durka , J Kowalski-Glikman

DOI: 10.1088/0264-9381/27/18/185008

关键词: Gauge fixingEquations of motionMathematical physicsPhysicsQuantization (physics)Lorentz transformationQuantum mechanicsImmirzi parameterTopological quantum field theoryBF modelGauge symmetry

摘要: In this paper we discuss the canonical analysis of -constrained BF theory. The action theory contains topological terms appended by a term that breaks gauge symmetry down to Lorentz subgroup . equations motion turn out be vacuum Einstein equations. By solving B field one finds not only standard Einstein–Cartan but also Holst proportional inverse Immirzi parameter, as well combination invariants. We show structure constraints an is exactly gravity in formulation. briefly quantization

参考文章(29)
Laurent Freidel, Artem Starodubtsev, Quantum gravity in terms of topological observables arXiv: High Energy Physics - Theory. ,(2005)
Lee Smolin, Artem Starodubtsev, General relativity with a topological phase: An Action principle arXiv: High Energy Physics - Theory. ,(2003)
Thomas Thiemann, Bianca Dittrich, Testing the master constraint programme for loop quantum gravity: II. Finite-dimensional systems Classical and Quantum Gravity. ,vol. 23, pp. 1067- 1088 ,(2006) , 10.1088/0264-9381/23/4/002
John R. Klauder, Coherent State Quantization of Constraint Systems Annals of Physics. ,vol. 254, pp. 419- 453 ,(1997) , 10.1006/APHY.1996.5647
Jerzy F. Plebański, On the separation of Einsteinian substructures Journal of Mathematical Physics. ,vol. 18, pp. 2511- 2520 ,(1977) , 10.1063/1.523215
Ghanashyam Date, Romesh K. Kaul, Sandipan Sengupta, Topological Interpretation of Barbero-Immirzi Parameter Physical Review D. ,vol. 79, pp. 044008- ,(2009) , 10.1103/PHYSREVD.79.044008
J. Kowalskiglikman, On the Gupta-Bleuler Quantization of the Hamiltonian Systems with Anomalies Annals of Physics. ,vol. 232, pp. 1- 39 ,(1994) , 10.1006/APHY.1994.1048
Giorgio Immirzi, Real and complex connections for canonical gravity Classical and Quantum Gravity. ,vol. 14, ,(1997) , 10.1088/0264-9381/14/10/002