作者: Michał Pilipczuk , Sebastian Siebertz
DOI: 10.1016/J.EJC.2021.103309
关键词: Mathematics 、 Combinatorics 、 Kernel (set theory) 、 Nowhere dense set 、 Independent set 、 Vertex (geometry) 、 Duality (order theory) 、 Dominating set 、 Integer 、 Kernelization
摘要: Abstract For a positive integer r , distance- independent set in an undirected graph G is I ⊆ V ( ) of vertices pairwise at distance greater than while dominating D such that every vertex the graph within most from . We study duality between maximum size 2 and minimum nowhere dense classes, as well kernelization complexity problem on these classes. Specifically, we prove admits almost linear kernel graph class.