Fully-Automated Fibroglandular Tissue Segmentation in Breast MRI

作者: Shandong Wu , Susan Weinstein , Brad M. Keller , Emily F. Conant , Despina Kontos

DOI: 10.1007/978-3-642-31271-7_32

关键词: Fully automatedCluster analysisArtificial intelligenceComputer visionSegmentationSimilarity (geometry)MedicineNonparametric statisticsBreast imagingBreast MRIFibroglandular Tissue

摘要: We propose an automated segmentation method for estimating the fibroglandular (i.e., dense) tissue in breast MRI. The first step of our is to segment as organ from other imaged parts through integrated edge extraction and voting algorithm. Then, we apply nonparametric non-uniform intensity normalization (N3) algorithm segmented correct bias field which common After that, fuzzy C-means clustering performed categorize into two clusters, i.e., fat. results are compared manual segmentations, verified by experienced imaging radiologist, assess accuracy algorithm, where Dice's Similarity Coefficient (DSC) shows a 0.73 agreement experiments. benefit correction also shown comparison with obtained excluding step.

参考文章(15)
Albert Gubern-Mérida, Michiel Kallenberg, Robert Martí, Nico Karssemeijer, Multi-class Probabilistic Atlas-Based Segmentation Method in Breast MRI Pattern Recognition and Image Analysis. pp. 660- 667 ,(2011) , 10.1007/978-3-642-21257-4_82
Chunming Li, Chenyang Xu, Adam W Anderson, John C Gore, None, MRI Tissue Classification and Bias Field Estimation Based on Coherent Local Intensity Clustering: A Unified Energy Minimization Framework information processing in medical imaging. ,vol. 21, pp. 288- 299 ,(2009) , 10.1007/978-3-642-02498-6_24
M J Yaffe, N F Boyd, J W Byng, R A Jong, E Fishell, G A Lockwood, L E Little, D L Tritchler, BREAST CANCER RISK AND MEASURED MAMMOGRAPHIC DENSITY European Journal of Cancer Prevention. ,vol. 7, ,(1998) , 10.1097/00008469-199802001-00010
Despina Kontos, Ye Xing, Predrag R. Bakic, Emily F. Conant, Andrew D. A. Maidment, A comparative study of volumetric breast density estimation in digital mammography and magnetic resonance imaging: results from a high-risk population Proceedings of SPIE. ,vol. 7624, pp. 762409- ,(2010) , 10.1117/12.845568
Virginia Molleran, Mary C. Mahoney, The BI-RADS Breast Magnetic Resonance Imaging Lexicon Magnetic Resonance Imaging Clinics of North America. ,vol. 18, pp. 171- 185 ,(2010) , 10.1016/J.MRIC.2010.02.001
Shandong Wu, Susan P. Weinstein, Emily F. Conant, A. Russell Localio, Mitchell D. Schnall, Despina Kontos, Fully automated chest wall line segmentation in breast MRI by using context information Proceedings of SPIE. ,vol. 8315, pp. 831507- ,(2012) , 10.1117/12.911612
Norman F. Boyd, Gillian S. Dite, Jennifer Stone, Anoma Gunasekara, Dallas R. English, Margaret R.E. McCredie, Graham G. Giles, David Tritchler, Anna Chiarelli, Martin J. Yaffe, John L. Hopper, Heritability of mammographic density, a risk factor for breast cancer. The New England Journal of Medicine. ,vol. 347, pp. 886- 894 ,(2002) , 10.1056/NEJMOA013390
Jun Wei, Heang-Ping Chan, Mark A. Helvie, Marilyn A. Roubidoux, Berkman Sahiner, Lubomir M. Hadjiiski, Chuan Zhou, Sophie Paquerault, Thomas Chenevert, Mitchell M. Goodsitt, Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images Medical Physics. ,vol. 31, pp. 933- 942 ,(2004) , 10.1118/1.1668512
Ke Nie, Jeon-Hor Chen, Siwa Chan, Man-Kwun I. Chau, Hon J. Yu, Shadfar Bahri, Tiffany Tseng, Orhan Nalcioglu, Min-Ying Su, Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI Medical Physics. ,vol. 35, pp. 5253- 5262 ,(2008) , 10.1118/1.3002306
Muqing Lin, Siwa Chan, Jeon-Hor Chen, Daniel Chang, Ke Nie, Shih-Ting Chen, Cheng-Ju Lin, Tzu-Ching Shih, Orhan Nalcioglu, Min-Ying Su, A new bias field correction method combining N3 and FCM for improved segmentation of breast density on MRI Medical Physics. ,vol. 38, pp. 5- 14 ,(2010) , 10.1118/1.3519869