Technical Note—On Converse Duality in Nonlinear Programming

作者: B. D. Craven , B. Mond

DOI: 10.1287/OPRE.19.4.1075

关键词: Technical noteNonlinear programmingConverseMathematicsAlgebraMathematical economicsCarlson's theoremDuality (mathematics)Management Science and Operations ResearchComputer Science Applications

摘要: Huard and Mangasarian have proved the converse duality theorem in mathematical programming by using Kuhn-Tucker theorem. However, this note points out advantages of Fritz John's

参考文章(7)
M. A. Hanson, A DUALITY THEOREM IN NON-LINEAR PROGRAMMING WITH NON-LINEAR CONSTRAINTS1 Australian Journal of Statistics. ,vol. 3, pp. 64- 72 ,(1961) , 10.1111/J.1467-842X.1961.TB00310.X
George Dantzig, E. Eisenberg, Richard Cottle, Symmetric dual nonlinear programs. Pacific Journal of Mathematics. ,vol. 15, pp. 809- 812 ,(1965) , 10.2140/PJM.1965.15.809
S. M. Sinha, A Duality Theorem for Nonlinear Programming Management Science. ,vol. 12, pp. 385- 390 ,(1966) , 10.1287/MNSC.12.5.385
P. Huard, Dual programs Ibm Journal of Research and Development. ,vol. 6, pp. 137- 139 ,(1962) , 10.1147/RD.61.0137
O.L Mangasarian, J Ponstein, Minmax and duality in nonlinear programming Journal of Mathematical Analysis and Applications. ,vol. 11, pp. 504- 518 ,(1965) , 10.1016/0022-247X(65)90101-0
O.L Mangasarian, S Fromovitz, The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints Journal of Mathematical Analysis and Applications. ,vol. 17, pp. 37- 47 ,(1967) , 10.1016/0022-247X(67)90163-1
O. L. Mangasarian, Duality in nonlinear programming Quarterly of Applied Mathematics. ,vol. 20, pp. 300- 302 ,(1962) , 10.1090/QAM/141530