作者: J. VALENCIANO , M. A. J. CHAPLAIN
DOI: 10.1142/S0218202504003155
关键词: Method of lines 、 Spectral element method 、 Numerical stability 、 Numerical partial differential equations 、 Mathematical analysis 、 Mathematics 、 Explicit and implicit methods 、 Spectral method 、 Ordinary differential equation 、 Exponential integrator
摘要: In this paper we consider a numerical solution to Anderson and Chaplain's tumour angiogenesis model1 over two-dimensional complex geometry. The of the governing system non-linear evolutionary partial differential equations is obtained using method lines: after spatial semi-discretisation based on subparametric Legendre spectral element performed, original replaced by an augmented stiff ordinary in autonomous form, which then advanced forward time explicit integrator fourth-order Chebyshev polynomial. Numerical simulations show convergence steady state towards linearly stable analytical solution.