AN EXPLICIT SUBPARAMETRIC SPECTRAL ELEMENT METHOD OF LINES APPLIED TO A TUMOUR ANGIOGENESIS SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS

作者: J. VALENCIANO , M. A. J. CHAPLAIN

DOI: 10.1142/S0218202504003155

关键词: Method of linesSpectral element methodNumerical stabilityNumerical partial differential equationsMathematical analysisMathematicsExplicit and implicit methodsSpectral methodOrdinary differential equationExponential integrator

摘要: In this paper we consider a numerical solution to Anderson and Chaplain's tumour angiogenesis model1 over two-dimensional complex geometry. The of the governing system non-linear evolutionary partial differential equations is obtained using method lines: after spatial semi-discretisation based on subparametric Legendre spectral element performed, original replaced by an augmented stiff ordinary in autonomous form, which then advanced forward time explicit integrator fourth-order Chebyshev polynomial. Numerical simulations show convergence steady state towards linearly stable analytical solution.

参考文章(5)
Hong Ma, A spectral element basin model for the shallow water equations Journal of Computational Physics. ,vol. 109, pp. 133- 149 ,(1993) , 10.1006/JCPH.1993.1205
J. VALENCIANO, M. A. J. CHAPLAIN, COMPUTING HIGHLY ACCURATE SOLUTIONS OF A TUMOUR ANGIOGENESIS MODEL Mathematical Models and Methods in Applied Sciences. ,vol. 13, pp. 747- 766 ,(2003) , 10.1142/S0218202503002702
Mark Taylor, Joseph Tribbia, Mohamed Iskandarani, The Spectral Element Method for the Shallow Water Equations on the Sphere Journal of Computational Physics. ,vol. 130, pp. 92- 108 ,(1997) , 10.1006/JCPH.1996.5554
William J. Gordon, Charles A. Hall, Transfinite element methods: Blending-function interpolation over arbitrary curved element domains Numerische Mathematik. ,vol. 21, pp. 109- 129 ,(1973) , 10.1007/BF01436298
Karol Z. Korczak, Anthony T. Patera, An isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry Journal of Computational Physics. ,vol. 62, pp. 361- 382 ,(1986) , 10.1016/0021-9991(86)90134-8