The Smyth Completion

作者: M. Schellekens

DOI: 10.1016/S1571-0661(04)00029-5

关键词: Discrete mathematicsRunning timeClass (set theory)Merge sortDenotational semanticsMathematics

摘要: Abstract The Smyth completion ([15], [16], [18] and [19]) provides a topological foundation for Denotational Semantics. We show that this theory simultaneously the complexity analysis of programs via new “complexity (distance) spaces”. spaces are shown to be weightable ([13], [8], [10]) thus belong class S-completable quasi-uniform ([19]). possess sequential completion. applicability “Divide & Conquer” algorithms is illustrated by proof (based on Banach theorem) fact mergesort has optimal asymptotic average running time.

参考文章(4)
HANS-PETER A. KÜNZI, VÁCLAV VAJNER, Weighted Quasi‐Metrics Annals of the New York Academy of Sciences. ,vol. 728, pp. 64- 77 ,(1994) , 10.1111/J.1749-6632.1994.TB44134.X
H. P. Kũnzi, Complete quasi-pseudo-metric spaces Acta Mathematica Hungarica. ,vol. 59, pp. 121- 146 ,(1992) , 10.1007/BF00052099
Anna Di Concilio, Spazi quasimetrici e topologie ad essi associate ,vol. 38, pp. 113- 130 ,(1971)
Donald Ervin Knuth, The Art of Computer Programming ,(1968)