Towards a general framework for fast and feasible k-space trajectories for MRI based on projection methods.

作者: Shubham Sharma , Mario Coutino , Sundeep Prabhakar Chepuri , Geert Leus , K.V.S. Hari

DOI: 10.1016/J.MRI.2020.06.016

关键词: Reduction (complexity)Accelerationk-spaceAlgorithmComputer scienceCompressed sensingProjection (set theory)TraverseImaging phantomProjection method

摘要: Abstract The design of feasible trajectories to traverse the k-space for sampling in magnetic resonance imaging (MRI) is important while considering ways reduce scan time. Over recent years, non-Cartesian have been observed result benign artifacts and being less sensitive motion. In this paper, we propose a generalized framework that encompasses projection-based methods generate trajectories. This allows construct from both random or structured initial trajectories, e.g., based on traveling salesman problem (TSP). We evaluate performance proposed by simulating reconstruction 128 × 128 256 × 256 phantom brain MRI images terms structural similarity (SSIM) index peak signal-to-noise ratio (PSNR) using compressed sensing techniques. It TSP-based projection method with constant acceleration parameterization (CAP) better compared velocity (CVP) similar read-out Further, random-like are be than as they time providing quality. A reduction upto 67% achieved permutation (PP) method.

参考文章(49)
Katherine L. Wright, Jesse I. Hamilton, Mark A. Griswold, Vikas Gulani, Nicole Seiberlich, Non‐Cartesian parallel imaging reconstruction Journal of Magnetic Resonance Imaging. ,vol. 40, pp. 1022- 1040 ,(2014) , 10.1002/JMRI.24521
S. Johanna Vannesjo, Nadine N. Graedel, Lars Kasper, Simon Gross, Julia Busch, Maximilian Haeberlin, Christoph Barmet, Klaas P. Pruessmann, Image reconstruction using a gradient impulse response model for trajectory prediction Magnetic Resonance in Medicine. ,vol. 76, pp. 45- 58 ,(2016) , 10.1002/MRM.25841
Dong‐hyun Kim, Elfar Adalsteinsson, Daniel M Spielman, None, Simple analytic variable density spiral design Magnetic Resonance in Medicine. ,vol. 50, pp. 214- 219 ,(2003) , 10.1002/MRM.10493
Mathias Davids, Michaela Ruttorf, Frank G. Zollner, Lothar R. Schad, Fast and Robust Design of Time-Optimal k-Space Trajectories in MRI IEEE Transactions on Medical Imaging. ,vol. 34, pp. 564- 577 ,(2015) , 10.1109/TMI.2014.2362681
Nicolas Chauffert, Philippe Ciuciu, Jonas Kahn, Pierre Weiss, Variable Density Sampling with Continuous Trajectories Siam Journal on Imaging Sciences. ,vol. 7, pp. 1962- 1992 ,(2014) , 10.1137/130946642
Duan-duan Liu, Dong Liang, Xin Liu, Yuan-ting Zhang, Under-sampling trajectory design for compressed sensing MRI international conference of the ieee engineering in medicine and biology society. ,vol. 2012, pp. 73- 76 ,(2012) , 10.1109/EMBC.2012.6345874
J. Hennig, K-space sampling strategies. European Radiology. ,vol. 9, pp. 1020- 1031 ,(1999) , 10.1007/S003300050788
M. Lustig, D.L. Donoho, J.M. Santos, J.M. Pauly, Compressed Sensing MRI IEEE Signal Processing Magazine. ,vol. 25, pp. 72- 82 ,(2008) , 10.1109/MSP.2007.914728
David S Smith, Lori R Arlinghaus, Thomas E Yankeelov, Edward B Welch, None, Curvelets as a sparse basis for compressed sensing magnetic resonance imaging Medical Imaging 2013: Image Processing. ,vol. 8669, pp. 866929- ,(2013) , 10.1117/12.2007032