Rehabilitation Exercise Recognition and Evaluation Based on Smart Sensors With Deep Learning Framework

作者: Wentong Zhang , Caixia Su , Chuan He

DOI: 10.1109/ACCESS.2020.2989128

关键词: Exercise therapyDeep learningArtificial intelligenceComputer scienceConvolutional neural networkMixture modelBody movementRehabilitationIntelligent sensorActivity recognitionAugmented realityMachine learning

摘要: … deep learning classifier to assess every rehabilitation class exercise at different levels. The categorized deep learning methods show improved performance … and the test score analyzed …

参考文章(24)
Valerie Pomeroy, Salvatore M. Aglioti, Victor W. Mark, Dennis McFarland, Cathy Stinear, Steven L. Wolf, Maurizio Corbetta, Susan M. Fitzpatrick, Neurological Principles and Rehabilitation of Action Disorders: Rehabilitation Interventions Neurorehabilitation and Neural Repair. ,vol. 25, ,(2011) , 10.1177/1545968311410942
Csaba Kertesz, Physiotherapy Exercises Recognition Based on RGB-D Human Skeleton Models 2013 European Modelling Symposium. pp. 21- 29 ,(2013) , 10.1109/EMS.2013.4
Roanna Lun, Wenbing Zhao, A Survey of Applications and Human Motion Recognition with Microsoft Kinect International Journal of Pattern Recognition and Artificial Intelligence. ,vol. 29, pp. 1555008- ,(2015) , 10.1142/S0218001415550083
Mariëlle W van Ooijen, Melvyn Roerdink, Marga Trekop, Jan Visschedijk, Thomas W Janssen, Peter J Beek, Functional gait rehabilitation in elderly people following a fall-related hip fracture using a treadmill with visual context: design of a randomized controlled trial BMC Geriatrics. ,vol. 13, pp. 34- 34 ,(2013) , 10.1186/1471-2318-13-34
D. Fuentes, L. Gonzalez-Abril, C. Angulo, J.A. Ortega, Online motion recognition using an accelerometer in a mobile device Expert Systems With Applications. ,vol. 39, pp. 2461- 2465 ,(2012) , 10.1016/J.ESWA.2011.08.098
Muhammad Hassan Khan, Jullien Helsper, Zeyd Boukhers, Marcin Grzegorzek, Automatic recognition of movement patterns in the vojta-therapy using RGB-D data international conference on image processing. pp. 1235- 1239 ,(2016) , 10.1109/ICIP.2016.7532555
Aleksandar Vakanski, Jake M Ferguson, Stephen Lee, Metrics for Performance Evaluation of Patient Exercises during PhysicalTherapy International Journal of Physical Medicine and Rehabilitation. ,vol. 5, pp. 1- 6 ,(2017) , 10.4172/2329-9096.1000403
Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng, Lisha Hu, None, Deep Learning for Sensor-based Activity Recognition: A Survey Pattern Recognition Letters. ,vol. 119, pp. 3- 11 ,(2018) , 10.1016/J.PATREC.2018.02.010
Mohammed Mehedi Hassan, Md Zia Uddin, Amr Mohamed, Ahmad Almogren, None, A robust human activity recognition system using smartphone sensors and deep learning Future Generation Computer Systems. ,vol. 81, pp. 307- 313 ,(2018) , 10.1016/J.FUTURE.2017.11.029
Marianna Capecci, Maria Gabriella Ceravolo, Francesco Ferracuti, Sabrina Iarlori, Ville Kyrki, Andrea Monteriù, Luca Romeo, Federica Verdini, A Hidden Semi-Markov Model based approach for rehabilitation exercise assessment. Journal of Biomedical Informatics. ,vol. 78, pp. 1- 11 ,(2018) , 10.1016/J.JBI.2017.12.012