Existence Theory of Swirling Flow

作者: Björn Birnir

DOI: 10.1007/978-1-4614-6262-0_4

关键词: Probabilistic logicStokes flowFlow (mathematics)TurbulenceA priori and a posterioriSobolev spaceMathematical analysisMathematicsSection (fiber bundle)Set (abstract data type)

摘要: We will consider the stochastic Navier–Stokes equation for swirling flow(1.23), see Sect.1.4, in next three sections. Similar results hold equation(1.65) describing fully developed turbulence. However, to emphasize that (1.23) and (1.65) are not same equations we set coefficients c k =h below. The h s can then be large but decay with increasing k. In this section first explain probabilistic setting prove some a priori estimates.

参考文章(71)
A.G. Bershadskii, Theory of homogenous turbulence Magnetohydrodynamics (Engl. Transl.); (United States). ,(1985)
Stephen B. Pope, Turbulent Flows Cambridge University Press. ,(2000) , 10.1017/CBO9780511840531
Katepalli R. Sreenivasan, Yukio Kaneda, Keith Moffatt, Peter A. Davidson, A Voyage Through Turbulence ,(2011)
Edward C. Waymire, Rabi Bhattacharya, A basic course in probability theory ,(2007)
D. J. Tritton, The Structure of Turbulent Flows Springer Netherlands. pp. 261- 291 ,(1977) , 10.1007/978-94-009-9992-3_22
William O. Criminale, Robert Betchov, Joseph Gillis, Stability of Parallel Flows ,(2012)
G. Da Prato, J. Zabczyk, Ergodicity for infinite dimensional systems Cambridge University Press. ,(1996) , 10.1017/CBO9780511662829
Giuseppe Da Prato, Jerzy Zabczyk, Stochastic Equations in Infinite Dimensions ,(1992)