De novo inference of stratification and local admixture in sequencing studies.

作者: Yu Zhang

DOI: 10.1186/1471-2105-14-S5-S17

关键词: InferenceDNA sequencingPopulationBayesian probabilityGenetic admixtureBayes' theoremHuman genomeComputational biologyGenomicsGeneticsBiology

摘要: Analysis of population structures and genome local ancestry hasbecome increasingly important in disease genetics. With the advance next generation sequencing technologies, complete genetic variants individuals' genomes are quickly generated, providing unprecedented opportunities for learning evolution histories identifying signatures at SNP resolution. The successes those studies critically rely on accurate powerful computational tools that can fully utilize information. Although many algorithms have been developed structure inference admixture mapping, them only work independent SNPs genotype or haplotype format, require a large panel reference individuals. In this paper, we propose novel probabilistic method detecting admixture. takes input data, data data. characterizes dependence via segmentation, such all detected study be utilized inference. further utilizes infinite-state Bayesian Markov model to perform de novo stratification Using simulated datasets from HapMapII 1000Genomes, show our performs superior than several existing algorithms, particularly when limited no individuals available. Our is applicable not human but also other species interests, which little information Software Availability: http://stat.psu.edu/~yuzhang/software/dbm.tar

参考文章(29)
Bogdan Paşaniuc, Justin Kennedy, Ion Măndoiu, Imputation-Based Local Ancestry Inference in Admixed Populations international symposium on bioinformatics research and applications. pp. 221- 233 ,(2009) , 10.1007/978-3-642-01551-9_22
David Reich, Nick Patterson, Philip L De Jager, Gavin J McDonald, Alicja Waliszewska, Arti Tandon, Robin R Lincoln, Cari DeLoa, Scott A Fruhan, Philippe Cabre, Odile Bera, Gilbert Semana, M Ann Kelly, David A Francis, Kristin Ardlie, Omar Khan, Bruce A C Cree, Stephen L Hauser, Jorge R Oksenberg, David A Hafler, A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility Nature Genetics. ,vol. 37, pp. 1113- 1118 ,(2005) , 10.1038/NG1646
Stephan C Schuster, Next-generation sequencing transforms today's biology. Nature Methods. ,vol. 5, pp. 16- 18 ,(2008) , 10.1038/NMETH1156
Michael F. Seldin, Bogdan Pasaniuc, Alkes L. Price, New approaches to disease mapping in admixed populations Nature Reviews Genetics. ,vol. 12, pp. 523- 528 ,(2011) , 10.1038/NRG3002
Xiaofeng Zhu, Richard S. Cooper, Robert C. Elston, Linkage Analysis of a Complex Disease through Use of Admixed Populations American Journal of Human Genetics. ,vol. 74, pp. 1136- 1153 ,(2004) , 10.1086/421329
Alkes L. Price, Arti Tandon, Nick Patterson, Kathleen C. Barnes, Nicholas Rafaels, Ingo Ruczinski, Terri H. Beaty, Rasika Mathias, David Reich, Simon Myers, Sensitive Detection of Chromosomal Segments of Distinct Ancestry in Admixed Populations PLoS Genetics. ,vol. 5, pp. e1000519- ,(2009) , 10.1371/JOURNAL.PGEN.1000519
George M. Church, Genomes for all. Scientific American. ,vol. 294, pp. 46- 54 ,(2006) , 10.1038/SCIENTIFICAMERICAN0106-46
Daniel John Lawson, Garrett Hellenthal, Simon Myers, Daniel Falush, Inference of Population Structure using Dense Haplotype Data PLoS Genetics. ,vol. 8, pp. e1002453- ,(2012) , 10.1371/JOURNAL.PGEN.1002453
Hua Tang, Marc Coram, Pei Wang, Xiaofeng Zhu, Neil Risch, Reconstructing Genetic Ancestry Blocks in Admixed Individuals American Journal of Human Genetics. ,vol. 79, pp. 1- 12 ,(2006) , 10.1086/504302
C.J. Hoggart, M.D. Shriver, R.A. Kittles, D.G. Clayton, P.M. McKeigue, Design and Analysis of Admixture Mapping Studies American Journal of Human Genetics. ,vol. 74, pp. 965- 978 ,(2004) , 10.1086/420855