Powerful Cocktail Methods for Detecting Genome-wide Gene-Environment Interaction

作者: Li Hsu , Shuo Jiao , James Y. Dai , Carolyn Hutter , Ulrike Peters

DOI: 10.1002/GEPI.21610

关键词: Range (mathematics)Type I and type II errorsMultiple comparisons problemExploitModular designBiological networkStatistical hypothesis testingComputer scienceGenomeData mining

摘要: Identifying gene and environment interaction (G × E) can provide insights into biological networks of com- plex diseases, identify novel genes that act synergistically with environmental factors, inform risk prediction. However, despite the fact hundreds disease-associated loci have been identified from genome-wide association studies (GWAS), few G ×Es discovered. One reason is most are underpowered for detecting these interactions. Several new methods proposed to improve power E analysis, but performance varies scenario. In this article, we present a module-based approach integrating various exploits each method's appealing aspects. There three modules in our approach: (1) screening module prioritizing Single Nucleotide Polymorphisms (SNPs); (2) multiple comparison testing E; (3) module. We combine all develop two "cocktail" methods. demonstrate cocktail maintain type I error, tracks well best existing methods, may be different un- der scenarios models. For GWAS, where true models unknown, like powerful under wide range situations particularly appealing. Broadly speaking, modular conceptually straightforward computationally simple. It builds on common test statistics easily implemented without additional computational efforts. also allows an easy incorporation as they developed. Our work provides comprehensive tool devising effective strategies detection gene-environment Genet. Epidemiol. 36:183-194, 2012. C � 2012 Wiley Periodicals, Inc.

参考文章(17)
Charles Kooperberg, James Y. Dai, Michael LeBlanc, Ross L Prentice, On two-stage hypothesis testing procedures via asymptotically independent statistics ,(2010)
Iuliana Ionita-Laza, Matthew B. McQueen, Nan M. Laird, Christoph Lange, Genomewide Weighted Hypothesis Testing in Family-Based Association Studies, with an Application to a 100K Scan American Journal of Human Genetics. ,vol. 81, pp. 607- 614 ,(2007) , 10.1086/519748
Cassandra E. Murcray, Juan Pablo Lewinger, David V. Conti, Duncan C. Thomas, W. James Gauderman, Sample size requirements to detect gene-environment interactions in genome-wide association studies. Genetic Epidemiology. ,vol. 35, pp. 201- 210 ,(2011) , 10.1002/GEPI.20569
Duncan Thomas, Gene–environment-wide association studies: emerging approaches Nature Reviews Genetics. ,vol. 11, pp. 259- 272 ,(2010) , 10.1038/NRG2764
M Garcia-Closas, N Chatterjee, N Malats, X Wu, JD Figueroa, FX Real, DPG van den Berg, G Matullo, D Baris, M Thun, LALM Kiemeney, P Vilneis, I De Vivo, D Albanes, M Purdue, T Rafnar, MAT Hildebrandt, AE Kiltie, O Cussenot, K Golka, R Kumar, JA Taylor, JI Mayordomo, KB Jacobs, M Kogevinas, A Hutchinson, Z Wang, Y Fu, L Prokunina-Olsson, L Burdett, M Yeager, W Wheeler, A Tardon, C Serra, A Carrato, R Garcia-Closas, J Lloreta, A Johnson, M Schwenn, MR Karagas, A Schned, GL Andriole, R Grubb, A Black, EJ Jacobs, WR Diver, SM Gapstur, SJ Weinstein, J Virtamo, VK Cortessis, M Gago-Dominguez, MC Pike, MC Stern, JM Yuan, DJ Hunter, M McGrath, CP Dinney, B Czerniak, M Chen, H Yang, S Vermeulen, KKH Aben, JA Witjes, RR Makkinje, P Sulem, S Besenbacher, E Riboli, P Brennan, S Panico, C Navarro, NE Allen, HB Bueno-De-Mesquita, D Trichopoulos, N Caporaso, MT Landi, F Canzian, B Ljungberg, A Tjonneland, F Clavel-Chapelon, DT Bishop, MT Teo, MA Knowles, S Guarrera, S Polidoro, F Ricceri, C Sacerdote, A Allione, G Cancel-Tassin, S Selinski, JG Hengstler, H Dietrich, T Fletcher, P Rudnai, E Gurzau, K Koppova, SC Bolick, A Godfrey, Z Xu, None, A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci Nature Genetics. ,vol. 42, pp. 978- 984 ,(2010) , 10.1038/NG.687
Kaspar Mossman, The Wellcome Trust Case Control Consortium, U.K. Scientific American. ,vol. 298, pp. 42- 42 ,(2008) , 10.1038/SCIENTIFICAMERICAN0108-42A
Kathryn Roeder, Larry Wasserman, Genome-Wide Significance Levels and Weighted Hypothesis Testing Statistical Science. ,vol. 24, pp. 398- 413 ,(2009) , 10.1214/09-STS289
D. Li, D. V. Conti, Detecting Gene-Environment Interactions Using a Combined Case-Only and Case-Control Approach American Journal of Epidemiology. ,vol. 169, pp. 497- 504 ,(2008) , 10.1093/AJE/KWN339
Kathryn Roeder, B. Devlin, Larry Wasserman, Improving power in genome-wide association studies: weights tip the scale Genetic Epidemiology. ,vol. 31, pp. 741- 747 ,(2007) , 10.1002/GEPI.20237