Study of hidden attractors, multiple limit cycles from Hopf bifurcation and boundedness of motion in the generalized hyperchaotic Rabinovich system

作者: Zhouchao Wei , Pei Yu , Wei Zhang , Minghui Yao

DOI: 10.1007/S11071-015-2144-8

关键词: Lyapunov exponentLimit (mathematics)Stable equilibriumAttractorComputer simulationMathematical analysisMotion (geometry)MathematicsHopf bifurcationComplex dynamics

摘要: Based on Rabinovich system, a 4D system is generalized to study hidden attractors, multiple limit cycles and boundedness of motion. In the sense coexisting remarkable finding that proposed has hyperchaotic attractors around unique stable equilibrium. To understand complex dynamics some basic properties, such as Lyapunov exponents, way producing hyperchaos are analyzed with numerical simulation. Moreover, it proved there exist four small-amplitude bifurcating from equilibrium via Hopf bifurcation. Finally, motion rigorously proved.

参考文章(56)
Yuri A. Kuznetsov, Elements of applied bifurcation theory (2nd ed.) Springer-Verlag New York, Inc.. ,(1998)
Yuri A. Kuznetsov, Elements of applied bifurcation theory ,(1995)
V.Y. Trakhtengerts, A.S. Pikovskii, M.I. Rabinovich, Onset of stochasticity in decay confinement of parametric instability Journal of Experimental and Theoretical Physics. ,vol. 47, pp. 715- ,(1978)
Julien Clinton Sprott, Chaos and time-series analysis ,(2001)
Jaume Llibre, Marcelo Messias, Paulo R da Silva, On the global dynamics of the Rabinovich system Journal of Physics A. ,vol. 41, pp. 275210- ,(2008) , 10.1088/1751-8113/41/27/275210
Xiong Wang, Guanrong Chen, A chaotic system with only one stable equilibrium Communications in Nonlinear Science and Numerical Simulation. ,vol. 17, pp. 1264- 1272 ,(2012) , 10.1016/J.CNSNS.2011.07.017
G. A. LEONOV, N. V. KUZNETSOV, TIME-VARYING LINEARIZATION AND THE PERRON EFFECTS International Journal of Bifurcation and Chaos. ,vol. 17, pp. 1079- 1107 ,(2007) , 10.1142/S0218127407017732
Hassan Saberi Nik, Robert A. Van Gorder, Competitive modes for the Baier–Sahle hyperchaotic flow in arbitrary dimensions Nonlinear Dynamics. ,vol. 74, pp. 581- 590 ,(2013) , 10.1007/S11071-013-0990-9