A novel framework based on biclustering for automatic epileptic seizure detection

作者: Qin Lin , Shuqun Ye , Cuihong Wu , Wencheng Gu , Jiaqian Wang

DOI: 10.1007/S13042-017-0716-2

关键词: Curse of dimensionalityEpileptic seizureEpilepsyBiclusteringPattern recognitionClassifier (UML)Computational intelligenceElectroencephalographyEpilepsy seizureComputer scienceArtificial intelligenceMachine learning

摘要: Automatic epileptic seizure detection based on electroencephalogram is crucial to epilepsy diagnosis and treatment. However, the large numbers of time series make it quite challenging establish a high performance automatic method. Considering different physiological states brain could be characterized by distinct combinations or interactions similar discontinuous local temporal patterns, novel framework biclustering for proposed in this paper. First, CC algorithm used identify patterns. Then, bicluster membership matrix using new similarity measurement constructed reduce dimensionality. At last, ELM classifier adopted discriminate between seizure-free EEG signals. With extensive comparative studies evaluations publicly available Bonn dataset, indicates that not only automatically detect predict an with performances respect accuracy, robustness efficiency, but also implicitly provide valuable knowledge studying mechanisms epilepsy.

参考文章(52)
Binda Wang, Yunwen Miao, Hongya Zhao, Jian Jin, Yizeng Chen, A biclustering-based method for market segmentation using customer pain points Engineering Applications of Artificial Intelligence. ,vol. 47, pp. 101- 109 ,(2016) , 10.1016/J.ENGAPPAI.2015.06.005
Huibin Jia, Weiwei Peng, Li Hu, A novel approach to identify time-frequency oscillatory features in electrocortical signals. Journal of Neuroscience Methods. ,vol. 253, pp. 18- 27 ,(2015) , 10.1016/J.JNEUMETH.2015.05.026
Fernando J. Von Zuben, Pablo A. D. de Castro, Fabrício O. de França, Hamilton M. Ferreira, Applying biclustering to text mining: an immune-inspired approach international conference on artificial immune systems. pp. 83- 94 ,(2007) , 10.1007/978-3-540-73922-7_8
George M. Church, Yizong Cheng, Biclustering of Expression Data intelligent systems in molecular biology. ,vol. 8, pp. 93- 103 ,(2000)
Stanislav Busygin, Nikita Boyko, Panos M. Pardalos, Michael Bewernitz, Georges Ghacibeh, Onur Seref, O. Erhun Kundakcioglu, Panos Pardalos, Biclustering EEG data from epileptic patients treated with vagus nerve stimulation DATA MINING, SYSTEMS ANALYSIS AND OPTIMIZATION IN BIOMEDICINE. ,vol. 953, pp. 220- 231 ,(2007) , 10.1063/1.2817345
David Sommer, Martin Golz, Clustering of EEG-Segments Using Hierarchical Agglomerative Methods and Self-Organizing Maps Artificial Neural Networks — ICANN 2001. pp. 642- 649 ,(2001) , 10.1007/3-540-44668-0_90
Sotiris B. Kotsiantis, Supervised Machine Learning: A Review of Classification Techniques Informatica (lithuanian Academy of Sciences). ,vol. 31, pp. 249- 268 ,(2007)
Huanyu Zhao, Xueyan Guo, Mingwei Wang, Tongliang Li, Chaoyi Pang, Dimitrios Georgakopoulos, Analyze EEG signals with extreme learning machine based on PMIS feature selection International Journal of Machine Learning and Cybernetics. ,vol. 9, pp. 243- 249 ,(2018) , 10.1007/S13042-015-0378-X
K. Lehnertz, C.E. Elger, Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss Electroencephalography and Clinical Neurophysiology. ,vol. 95, pp. 108- 117 ,(1995) , 10.1016/0013-4694(95)00071-6