CRITICAL POINTS OF SMOOTH FUNCTIONS AND THEIR NORMAL FORMS

作者: Vladimir I Arnol'd

DOI: 10.1070/RM1975V030N05ABEH001521

关键词: Spectral sequenceAutomorphic formMathematicsElliptic curveLegendre polynomialsKoszul complexModuliLie algebraGravitational singularityMathematical analysis

摘要: This paper contains a survey of research on critical points smooth functions and their bifurcations. We indicate applications to the theory Lagrangian singularities (caustics), Legendre (wave fronts) asymptotic behaviour oscillatory integrals (the stationary phase method). describe connections with theories groups generated by reflections, automorphic forms, degenerations elliptic curves. give proofs theorems classification at most one modulus, also list all two moduli. The are based geometric technique associated Newton polygons, study roots certain Lie algebras resembling Enriques-Demazure fans, spectral sequences that constructed respect quasihomogeneous filtrations Koszul complex defined partial derivatives function.

参考文章(115)
Robin Hartshorne, Residues and duality ,(1966)
E.C. Zeeman, Catastrophe theory in biology Lecture Notes in Mathematics. pp. 101- 105 ,(1975) , 10.1007/BFB0082616
John Guckenheimer, Solving a single conservation law Lecture Notes in Mathematics. pp. 108- 134 ,(1975) , 10.1007/BFB0082618
Helmut A. Hamm, Lê Dũng Tráng, Un théorème de Zariski du type de Lefschetz Annales Scientifiques De L Ecole Normale Superieure. ,vol. 6, pp. 317- 355 ,(1973) , 10.24033/ASENS.1250
R. Thom, The bifurcation subset of a space of maps Lecture Notes in Mathematics. pp. 202- 208 ,(1971) , 10.1007/BFB0068620
Vladimir I. Arnold, On some topological invariants of algebraic functions Vladimir I. Arnold - Collected Works. pp. 199- 221 ,(1970) , 10.1007/978-3-642-31031-7_23
Gordon S Wassermann, Stability of Unfoldings ,(1974)
Claus Michael Ringel, Vlastimil Dlab, Representations of graphs and algebras Carleton University. ,(1974)
Frédéric Pham, Formules de Picard-Lefschetz généralisées et ramification des intégrales Bulletin de la Société mathématique de France. ,vol. 79, pp. 333- 367 ,(1965) , 10.24033/BSMF.1628