作者: V.sidda Reddy , Dr T.V. Rao , Dr A. Govardhan
关键词: Property (programming) 、 Data mining 、 Tree (data structure) 、 Node (networking) 、 Space (commercial competition) 、 Table (database) 、 Data stream mining 、 Computer science 、 Scalability 、 Relaxation (approximation)
摘要: Data Stream Mining algorithms performs under constraints called space used and time taken, which is due to the streaming property. The relaxation in these inversely proportional speed of data. Since caching mining streaming-data sensitive, here this paper a scalable, memory efficient frequent itemset model devised. proposed an incremental approach that builds single level multi node trees bushes from each window data; henceforth we refer algorithm as Tree (bush) based Incremental Frequent Itemset (TIFIM) over data streams. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times Roman"; mso-bidi-theme-font:minor-bidi;}