Automatic annotation extension and classification of documents using a probabilistic graphical model

作者: Abdessalem Bouzaieni , Sabine Barrat , Salvatore Tabbone

DOI: 10.1109/ICDAR.2015.7333775

关键词: Computer scienceTemporal annotationTask (project management)Information retrievalExtension (predicate logic)Probabilistic logicDocument classificationImage retrievalAnnotationGraphical model

摘要: With the fast growth of document images, annotation has become a research area great interest. Annotation allows to describe semantic content documents and facilitates their use research. However, for huge number documents, manual each becomes tedious task. A solution is annotate small part extend it automatically whole dataset. In this paper, we propose model extension classification using probabilistic graphical model. latter, combine visual textual characteristics show that integration user feedback improves step.

参考文章(20)
Aditya Kalyanpur, James Hendler, Bijan Parsia, Jennifer Golbeck, SMORE -Semantic Markup, Ontology, and RDF Editor Defense Technical Information Center. ,(2006) , 10.21236/ADA447989
Andrew D. Bagdanov, Josep Llados, Marcal Rusinol, Dimosthenis Karatzas, Multipage document retrieval by textual and visual representations international conference on pattern recognition. pp. 521- 524 ,(2012)
Herbert Bay, Tinne Tuytelaars, Luc Van Gool, SURF: speeded up robust features european conference on computer vision. ,vol. 1, pp. 404- 417 ,(2006) , 10.1007/11744023_32
Nawei Chen, Hagit Shatkay, Dorothea Blostein, Exploring a new space of features for document classification Proceedings of the 2006 conference of the Center for Advanced Studies on Collaborative research - CASCON '06. pp. 35- ,(2006) , 10.1145/1188966.1189013
Jayant Kumar, Peng Ye, David Doermann, Structural similarity for document image classification and retrieval Pattern Recognition Letters. ,vol. 43, pp. 119- 126 ,(2014) , 10.1016/J.PATREC.2013.10.030
Sabine Barrat, Salvatore Tabbone, Modeling, classifying and annotating weakly annotated images using Bayesian network Journal of Visual Communication and Image Representation. ,vol. 21, pp. 355- 363 ,(2010) , 10.1016/J.JVCIR.2010.02.010
Timo Ojala, Matti Pietikäinen, David Harwood, A comparative study of texture measures with classification based on featured distributions Pattern Recognition. ,vol. 29, pp. 51- 59 ,(1996) , 10.1016/0031-3203(95)00067-4
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X
Albert Gordo, Florent Perronnin, Ernest Valveny, Large-scale document image retrieval and classification with runlength histograms and binary embeddings Pattern Recognition. ,vol. 46, pp. 1898- 1905 ,(2013) , 10.1016/J.PATCOG.2012.12.004
Jinpeng Li, Harold Mouchère, Christian Viard-Gaudin, None, An annotation assistance system using an unsupervised codebook composed of handwritten graphical multi-stroke symbols Pattern Recognition Letters. ,vol. 35, pp. 46- 57 ,(2014) , 10.1016/J.PATREC.2012.11.018