Nonequilibrium phase transition in the kinetic Ising model: Is the transition point the maximum lossy point?

作者: Muktish Acharyya

DOI: 10.1103/PHYSREVE.58.179

关键词: Loop (topology)Transition pointCondensed matter physicsPhysicsMonte Carlo methodMagnetizationIsing modelEquations of motionPhase transitionNon-equilibrium thermodynamicsStatistical physics

摘要: The nonequilibrium dynamic phase transition, in the kinetic Ising model presence of an oscillating magnetic field, has been studied both by Monte Carlo simulation (in two dimensions) and solving mean-field dynamical equation motion for average magnetization. temperature variations hysteretic loss (loop area) correlation have near transition point. point identified as minimum-correlation becomes maximum above An analytical formulation developed to analyze results. A general relationship among hysteresis loop area, order parameter, also developed.

参考文章(15)
Madan Rao, H. R. Krishnamurthy, Rahul Pandit, Magnetic hysteresis in two model spin systems. Physical Review B. ,vol. 42, pp. 856- 884 ,(1990) , 10.1103/PHYSREVB.42.856
P B Thomas, D Dhar, Hysteresis in isotropic spin systems Journal of Physics A. ,vol. 26, pp. 3973- 3981 ,(1993) , 10.1088/0305-4470/26/16/014
Surajit Sengupta, Yatin Marathe, S. Puri, Cell-dynamical simulation of magnetic hysteresis in the two-dimensional Ising system. Physical Review B. ,vol. 45, pp. 7828- 7831 ,(1992) , 10.1103/PHYSREVB.45.7828
Tânia Tomé, Mário J. de Oliveira, Dynamic phase transition in the kinetic Ising model under a time-dependent oscillating field Physical Review A. ,vol. 41, pp. 4251- 4254 ,(1990) , 10.1103/PHYSREVA.41.4251
W. S. Lo, Robert A. Pelcovits, Ising model in a time-dependent magnetic field. Physical Review A. ,vol. 42, pp. 7471- 7474 ,(1990) , 10.1103/PHYSREVA.42.7471
Muktish Acharyya, Bikas K. Chakrabarti, Response of Ising systems to oscillating and pulsed fields: Hysteresis, ac, and pulse susceptibility. Physical Review B. ,vol. 52, pp. 6550- 6568 ,(1995) , 10.1103/PHYSREVB.52.6550
S. W. Sides, R. A. Ramos, P. A. Rikvold, M. A. Novotny, Kinetic Ising system in an oscillating external field: Stochastic resonance and residence-time distributions Journal of Applied Physics. ,vol. 81, pp. 5597- 5599 ,(1997) , 10.1063/1.364611
S. W. Sides, R. A. Ramos, P. A. Rikvold, M. A. Novotny, Response of a kinetic Ising system to oscillating external fields: Amplitude and frequency dependence Journal of Applied Physics. ,vol. 79, pp. 6482- 6484 ,(1996) , 10.1063/1.361978
Muktish Acharyya, Nonequilibrium-phase transition and 'specific-heat' singularity in the kinetic Ising model: A Monte Carlo study Physica A-statistical Mechanics and Its Applications. ,vol. 235, pp. 469- 472 ,(1997) , 10.1016/S0378-4371(96)00356-1