A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory

作者: C.M.C. Roque , A.J.M. Ferreira , R.M.N. Jorge

DOI: 10.1016/J.JSV.2006.08.037

关键词: MathematicsNumerical testsMathematical analysisRadial basis functionMaterial propertiesVibrationDiscretizationGeometryHomogenization (chemistry)Shear deformation theory

摘要: Abstract The free vibration analysis of functionally graded plates is performed by the multiquadric radial basis function method and a higher-order shear deformation theory. truly meshless method, allowing fast simple domain boundary discretization. We use an homogenization technique for material properties based on Mori–Tanaka scheme. Numerical tests show that reliable produces good results.

参考文章(30)
Shmuel Rippa, An algorithm for selecting a good value for the parameter c in radial basis function interpolation Advances in Computational Mathematics. ,vol. 11, pp. 193- 210 ,(1999) , 10.1023/A:1018975909870
Maithili Sharan, E.J. Kansa, Suman Gupta, Application of the multiquadric method for numerical solution of elliptic partial differential equations Applied Mathematics and Computation. ,vol. 84, pp. 275- 302 ,(1997) , 10.1016/S0096-3003(96)00109-9
R.L. Hardy, Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 Computers & Mathematics With Applications. ,vol. 19, pp. 163- 208 ,(1990) , 10.1016/0898-1221(90)90272-L
Senthil S. Vel, R.C. Batra, Three-dimensional exact solution for the vibration of functionally graded rectangular plates Journal of Sound and Vibration. ,vol. 272, pp. 703- 730 ,(2004) , 10.1016/S0022-460X(03)00412-7
Yiu-Chung Hon, Kwok Fai Cheung, Xian-Zhong Mao, Edward J Kansa, None, Multiquadric Solution for Shallow Water Equations Journal of Hydraulic Engineering. ,vol. 125, pp. 524- 533 ,(1999) , 10.1061/(ASCE)0733-9429(1999)125:5(524)
Y Liu, K M Liew, Y C Hon, X Zhang, Numerical simulation and analysis of an electroactuated beam using a radial basis function Smart Materials and Structures. ,vol. 14, pp. 1163- 1171 ,(2005) , 10.1088/0964-1726/14/6/009
M.B. Bever, P.E. Duwez, Gradients in composite materials Materials Science and Engineering. ,vol. 10, pp. 1- 8 ,(1972) , 10.1016/0025-5416(72)90059-6