作者: J.S. Buzas , L.A. Stefanski
DOI: 10.1016/0378-3758(95)00180-8
关键词: Errors-in-variables models 、 Mathematics 、 Instrumental variable 、 Multinomial probit 、 Probit 、 Estimator 、 Regression analysis 、 Econometrics 、 Probit model 、 Statistics 、 Multivariate probit model
摘要: Probit regression is studied when normally distributed covariates are subject to measurement errors. Under the assumption that surrogate instrumental variables available, parameters in probit model shown be identified. The maximum likelihood estimator and an easily computed two-stage derived studied. asymptotically efficient. Simulation results complement theory provide evidence of robustness normality assumptions.