Accurate ionic forces and geometry optimization in linear-scaling density-functional theory with local orbitals

作者: Nicholas D. M. Hine , Mark Robinson , Peter D. Haynes , Chris-Kriton Skylaris , Mike C. Payne

DOI: 10.1103/PHYSREVB.83.195102

关键词: Linear scaleSurface (mathematics)Classical mechanicsBasis setLinear combination of atomic orbitalsDensity functional theoryPhysicsDelocalized electronEigenvalues and eigenvectorsEnergy minimization

摘要: Linear scaling methods for density-functional theory (DFT) simulations are formulated in terms of localized orbitals real space, rather than the delocalized eigenstates conventional approaches. In local-orbital methods, relative to DFT, desirable properties can be lost some extent, such as translational invariance total energy a system with respect small displacements and smoothness potential-energy surface. This has repercussions calculating accurate ionic forces geometries. this work we present results from onetep, our linear method based on space. The use psinc functions underlying basis set on-the-fly optimization smooth surfaces that consistent calculated using Hellmann-Feynman theorem. enables geometry performed. Results surface reconstructions silicon presented, along three example systems demonstrating performance quasi-Newton algorithm: an organic zwitterion, point defect crystal, semiconductor nanostructure.

参考文章(67)
Molecular modeling of nucleic acids American Chemical Society. ,(1997) , 10.1021/BK-1998-0682
Jorge Nocedal, Stephen J. Wright, Numerical Optimization ,(2008)
P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas Physical Review. ,vol. 136, pp. 864- 871 ,(1964) , 10.1103/PHYSREV.136.B864
W. Kohn, L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects Physical Review. ,vol. 140, pp. 1133- 1142 ,(1965) , 10.1103/PHYSREV.140.A1133
M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Iterative minimization techniques forab initiototal-energy calculations: molecular dynamics and conjugate gradients Reviews of Modern Physics. ,vol. 64, pp. 1045- 1097 ,(1992) , 10.1103/REVMODPHYS.64.1045
Stefan Goedecker, Linear scaling electronic structure methods Reviews of Modern Physics. ,vol. 71, pp. 1085- 1123 ,(1999) , 10.1103/REVMODPHYS.71.1085
Weitao Yang, Direct calculation of electron density in density-functional theory. Physical Review Letters. ,vol. 66, pp. 1438- 1441 ,(1991) , 10.1103/PHYSREVLETT.66.1438
Giulia Galli, Michele Parrinello, Large scale electronic structure calculations. Physical Review Letters. ,vol. 69, pp. 3547- 3550 ,(1992) , 10.1103/PHYSREVLETT.69.3547
X.-P. Li, R. W. Nunes, David Vanderbilt, Density-matrix electronic-structure method with linear system-size scaling. Physical Review B. ,vol. 47, pp. 10891- 10894 ,(1993) , 10.1103/PHYSREVB.47.10891
Pablo Ordejón, David A. Drabold, Richard M. Martin, Matthew P. Grumbach, Linear system-size scaling methods for electronic-structure calculations. Physical Review B. ,vol. 51, pp. 1456- 1476 ,(1995) , 10.1103/PHYSREVB.51.1456