Stochastic porous media equations in Rd

作者: Viorel Barbu , Michael Röckner , Francesco Russo

DOI: 10.1016/J.MATPUR.2014.10.004

关键词: Monotone polygonCombinatoricsSobolev spacePositive probabilityDiscrete mathematicsWiener processUniquenessPorous mediumFinite timeLipschitz continuityMathematics

摘要: Abstract Existence and uniqueness of solutions to the stochastic porous media equation d X − Δ ψ ( ) t = W in R are studied. Here, is a Wiener process, maximal monotone graph × such that r ≤ C | m , ∀ ∈ . In this general case, dimension restricted ≥ 3 main reason being absence convenient multiplier result space H { φ S ′ ; ξ F L 2 } for When Lipschitz, well-posedness, however, holds all dimensions on classical Sobolev 1 If ρ + we prove finite time extinction with strictly positive probability.

参考文章(23)
Viorel Barbu, Giuseppe Da Prato, The two phase stochastic Stefan problem Probability Theory and Related Fields. ,vol. 124, pp. 544- 560 ,(2002) , 10.1007/S00440-002-0232-4
Michael Röckner, Claudia Prévôt, A Concise Course on Stochastic Partial Differential Equations ,(2007)
Giuseppe Da Prato, Jerzy Zabczyk, Stochastic Equations in Infinite Dimensions ,(1992)
Marc Yor, Daniel Revuz, Continuous martingales and Brownian motion ,(1990)
Viorel Barbu, Giuseppe Da Prato, Michael Röckner, Stochastic Porous Media Equations and Self-Organized Criticality Communications in Mathematical Physics. ,vol. 285, pp. 901- 923 ,(2009) , 10.1007/S00220-008-0651-X
Viorel Barbu, Michael Röckner, Stochastic porous media equations and self-organized criticality: convergence to the critical state in all dimensions Communications in Mathematical Physics. ,vol. 311, pp. 539- 555 ,(2012) , 10.1007/S00220-012-1429-8
Nadia Belaribi, François Cuvelier, Francesco Russo, Probabilistic and deterministic algorithms for space multidimensional irregular porous media equation Stochastic Partial Differential Equations: Analysis and Computations. ,vol. 1, pp. 3- 62 ,(2013) , 10.1007/S40072-013-0001-7