作者: Viorel Barbu , Michael Röckner , Francesco Russo
DOI: 10.1016/J.MATPUR.2014.10.004
关键词: Monotone polygon 、 Combinatorics 、 Sobolev space 、 Positive probability 、 Discrete mathematics 、 Wiener process 、 Uniqueness 、 Porous medium 、 Finite time 、 Lipschitz continuity 、 Mathematics
摘要: Abstract Existence and uniqueness of solutions to the stochastic porous media equation d X − Δ ψ ( ) t = W in R are studied. Here, is a Wiener process, maximal monotone graph × such that r ≤ C | m , ∀ ∈ . In this general case, dimension restricted ≥ 3 main reason being absence convenient multiplier result space H { φ S ′ ; ξ F L 2 } for When Lipschitz, well-posedness, however, holds all dimensions on classical Sobolev 1 If ρ + we prove finite time extinction with strictly positive probability.