Exploiting the “doddington zoo” effect in biometric fusion

作者: Arun Ross , Ajita Rattani , Massimo Tistarelli

DOI: 10.1109/BTAS.2009.5339011

关键词: Matching (statistics)Face (geometry)Biometric fusionThroughput (business)Data miningScheme (programming language)Fingerprint databaseBiometricsWord error rateComputer science

摘要: Recent research in biometrics has suggested the existence of “Biometric Menagerie” which weak users contribute disproportionately to error rate (FAR and FRR) a biometric system. The aim this work is utilize observation design multibiometric system where information consolidated on user-specific basis. To facilitate this, database are characterized into multiple categories only belonging required provide additional information. contribution lies (a) selective fusion scheme invoked for subset users, (b) evaluating performance such two public datasets. Experiments multi-unit CASIA V3 iris WVU fingerprint indicate that fusion, as defined work, improves overall matching accuracy while potentially reducing computational time. This positive implications large-scale throughput can be substantially increased without compromising verification

参考文章(16)
Norman Poh, Josef Kittler, A Biometric Menagerie Index for Characterising Template/Model-Specific Variation international conference on biometrics. pp. 816- 827 ,(2009) , 10.1007/978-3-642-01793-3_83
Mark A. Przybocki, Douglas A. Reynolds, Alvin F. Martin, George R. Doddington, Walter Liggett, Sheep, Goats, Lambs and Wolves: A Statistical Analysis of Speaker Performance in the NIST 1998 Speaker Recognition Evaluation conference of the international speech communication association. ,(1998)
Krzysztof Kryszczuk, Andrzej Drygajlo, Improving classification with class-independent quality measures: Q-stack in face verification international conference on biometrics. pp. 1124- 1133 ,(2007) , 10.1007/978-3-540-74549-5_117
Arun Ross, Anil K. Jain, Jian-Zhong Qian, Information Fusion in Biometrics Lecture Notes in Computer Science. pp. 354- 359 ,(2001) , 10.1007/3-540-45344-X_52
J. Daugman, How iris recognition works IEEE Transactions on Circuits and Systems for Video Technology. ,vol. 14, pp. 21- 30 ,(2004) , 10.1109/TCSVT.2003.818350
Anil Jain, Karthik Nandakumar, Arun Ross, Score normalization in multimodal biometric systems Pattern Recognition. ,vol. 38, pp. 2270- 2285 ,(2005) , 10.1016/J.PATCOG.2005.01.012
K.-A. Toh, X. Jiang, W.-Y. Yau, Exploiting global and local decisions for multimodal biometrics verification IEEE Transactions on Signal Processing. ,vol. 52, pp. 3059- 3072 ,(2004) , 10.1109/TSP.2004.833862
Norman Poh, Samy Bengio, Arun Ross, Revisiting Doddington"s Zoo: A Systematic Method to Assess User-dependent Variabilities Multimodal User Authentication (MMUA). ,(2006)
A.K. Jain, A. Ross, Learning user-specific parameters in a multibiometric system international conference on image processing. ,vol. 1, pp. 57- 60 ,(2002) , 10.1109/ICIP.2002.1037958
M. Wittman, P. Davis, P.J. Flynn, Empirical Studies of the Existence of the Biometric Menagerie in the FRGC 2.0 Color Image Corpus computer vision and pattern recognition. pp. 33- 33 ,(2006) , 10.1109/CVPRW.2006.71