The Impact of Persistence Length on the Communication Efficiency of Microtubules and CNTs

作者: Stephen F. Bush , Sanjay Goel

DOI: 10.1007/978-3-642-04850-0_1

关键词: Graph propertyNanotechnologyPersistence lengthRandom graphMolecular communicationNanoscopic scaleCarbon nanotubeMicrotubuleNanotubeMaterials science

摘要: There are similarities between microtubules in living cells and carbon nanotubes (CNTs). Both have a similar physical structure properties both capable of transporting information at the nanoscale. Microtubules can also self-organize to create random graph structures, which be used as communication networks. The behavior understood by investigating their synthetic counterparts, namely, (CNT). At same time, networks CNTs may for molecular-level transport human body treatment diseases. This paper seeks examine basic created microtubules. depends strongly on alignment bond segments filaments, turn persistence length tubes. Persistence is important analyzing other structures such DNA; however, focus this nanotube We use spectral analysis simulated CNT network extracted from layout tubes resultant graphs examined. presents results simulation with different lengths.

参考文章(23)
Michael J. Moore, Akihiro Enomoto, Tadashi Nakano, Atsushi Kayasuga, Hiroaki Kojima, Hitoshi Sakakibara, Kazuhiro Oiwa, Tatsuya Suda, Molecular Communication: Simulation of Microtubule Topology Natural Computing. ,vol. 1, pp. 134- 144 ,(2009) , 10.1007/978-4-431-88981-6_12
Sander J. Tans, Alwin R. M. Verschueren, Cees Dekker, Room-temperature transistor based on a single carbon nanotube Nature. ,vol. 393, pp. 49- 52 ,(1998) , 10.1038/29954
J. Korner, K. Marton, On the capacity of uniform hypergraphs IEEE Transactions on Information Theory. ,vol. 36, pp. 153- 156 ,(1990) , 10.1109/18.50381
B Mickey, J Howard, Rigidity of microtubules is increased by stabilizing agents. Journal of Cell Biology. ,vol. 130, pp. 909- 917 ,(1995) , 10.1083/JCB.130.4.909
Jing Kong, Nathan R Franklin, Chongwu Zhou, Michael G Chapline, Shu Peng, Kyeongjae Cho, Hongjie Dai, Nanotube molecular wires as chemical sensors Science. ,vol. 287, pp. 622- 625 ,(2000) , 10.1126/SCIENCE.287.5453.622
Marcel E. Janson, Marileen Dogterom, A bending mode analysis for growing microtubules: evidence for a velocity-dependent rigidity. Biophysical Journal. ,vol. 87, pp. 2723- 2736 ,(2004) , 10.1529/BIOPHYSJ.103.038877
L. Lovasz, On the Shannon capacity of a graph IEEE Transactions on Information Theory. ,vol. 25, pp. 1- 7 ,(1979) , 10.1109/TIT.1979.1055985
Boris I. Yakobson, Luise S. Couchman, Persistence Length and Nanomechanics of Random Bundles of Nanotubes Journal of Nanoparticle Research. ,vol. 8, pp. 105- 110 ,(2006) , 10.1007/S11051-005-8335-3
Alan B. Dalton, Steve Collins, Edgar Muñoz, Joselito M. Razal, Von Howard Ebron, John P. Ferraris, Jonathan N. Coleman, Bog G. Kim, Ray H. Baughman, Super-tough carbon-nanotube fibres Nature. ,vol. 423, pp. 703- 703 ,(2003) , 10.1038/423703A
W GOLDMANN, Actin: A molecular wire, an electrical cable? Cell Biology International. ,vol. 32, pp. 869- 870 ,(2008) , 10.1016/J.CELLBI.2008.03.015