作者: Tobias Friedrich , Thomas Sauerwald
DOI: 10.1007/978-3-642-14031-0_16
关键词: Random graph 、 Heterogeneous random walk in one dimension 、 Combinatorics 、 Random function 、 Random field 、 Random walk 、 Random regular graph 、 Quantum walk 、 Discrete mathematics 、 Mathematics 、 Loop-erased random walk
摘要: The rotor router model is a popular deterministic analogue of random walk on graph. Instead moving to neighbor, the neighbors are served in fixed order. We examine how fast this "deterministic walk" covers all vertices (or edges). present general techniques derive upper bounds for vertex and edge cover time matching lower several important graph classes. Depending topology, can be asymptotically faster, slower or equally compared classical walk.