Symmetry classification of KdV-type nonlinear evolution equations

作者: F Güngör , VI Lahno , RZ Zhdanov , None

DOI: 10.1063/1.1737811

关键词: Pure mathematicsLie theoryKilling formNon-associative algebraLie conformal algebraKnizhnik–Zamolodchikov equationsAlgebraMathematicsLie groupAdjoint representation of a Lie algebraRepresentation of a Lie group

摘要: Group classification of a class third-order nonlinear evolution equations generalizing KdV and mKdV is performed. It shown that there are two admitting simple Lie algebras dimension three. Next, we prove exist only four invariant with respect to having nontrivial Levi factors six. Our analysis shows no under which semi-direct sums factor radical. Making use these results three, nine, thirty-eight, fifty-two inequivalent KdV-type one-, two-, three-, four-dimensional solvable algebras, respectively. Finally, perform complete group the most general linear equation.

参考文章(25)
What Is Integrability Springer Berlin Heidelberg. ,(1991) , 10.1007/978-3-642-88703-1
Asim O. Barut, Ryszard Raczka, Theory of group representations and applications ,(1977)
D. Gómez-Ullate, S. Lafortune, P. Winternitz, Symmetries of discrete dynamical systems involving two species Journal of Mathematical Physics. ,vol. 40, pp. 2782- 2804 ,(1999) , 10.1063/1.532728
A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, The Symmetry Approach to Classification of Integrable Equations What Is Integrability?. pp. 115- 184 ,(1991) , 10.1007/978-3-642-88703-1_4
F Güngör, M Sanielevici, P Winternitz, None, On the integrability properties of variable coefficient Korteweg-de Vries equations Canadian Journal of Physics. ,vol. 74, pp. 676- 684 ,(1996) , 10.1139/P96-097
F Güngör, Pavel Winternitz, None, Generalized Kadomtsev–Petviashvili equation with an infinite-dimensional symmetry algebra Journal of Mathematical Analysis and Applications. ,vol. 276, pp. 314- 328 ,(2002) , 10.1016/S0022-247X(02)00445-6
P. Winternitz, S. Tremblay, S. Lafortune, Symmetry Classification of Diatomic Molecular Chains Journal of Mathematical Physics. ,vol. 42, pp. 5341- 5357 ,(2001) , 10.1063/1.1398583
D. Levi, P. Winternitz, Symmetries of discrete dynamical systems Journal of Mathematical Physics. ,vol. 37, pp. 5551- 5576 ,(1996) , 10.1063/1.531722