A Limit Evolution Problem for Time-Dependent Point Interactions

作者: G.F. Dell'Antonio , R. Figari , A. Teta

DOI: 10.1006/JFAN.1996.0149

关键词: Laplace operatorMathematical analysisLimit (mathematics)Diffusion (business)Diffusion equationFixed pointTerm (time)MathematicsExpression (computer science)Uniqueness

摘要: Abstract We study the diffusion in R 3 of a particle interacting with N fixed points through point interactions whose strength varies time. Under mild assumptions on time dependence strengths, we prove existence for all times and uniqueness solution, which provide rather explicit expression. also that, under suitable rescaling interaction solution converges, when →∞, to equation regular killing term (potential). use properties local self-adjoint extensions Laplacian results from theory fractional integrals derivatives.

参考文章(12)
T. A. A. B., A. Erdelyi, Tables of Integral Transforms. I The Mathematical Gazette. ,vol. 39, pp. 337- ,(1955) , 10.2307/3608613
Paolo Acquistapace, Evolution operators and strong solutions of abstract linear parabolic equations Differential and Integral Equations. ,vol. 1, pp. 433- 457 ,(1988)
Sergio Albeverio, Solvable Models in Quantum Mechanics ,(1988)
R. Figari, H. Holden, A. Tetab, A law of large numbers and a central limit theorem for the Schrödinger operator with zero-range potentials Journal of Statistical Physics. ,vol. 51, pp. 205- 214 ,(1988) , 10.1007/BF01015327
G. H. Hardy, J. E. Littlewood, Some properties of fractional integrals II Mathematische Zeitschrift. ,vol. 34, pp. 403- 439 ,(1928) , 10.1007/BF01171116
I. M. Ryzhik, I. S. Gradshteyn, M. Y. Tseytlin, Y. V. Geronimus, Alan Jeffrey, Y. C. Fung, Table of Integrals, Series, and Products ,(1943)
D. R. Yafaev, Scattering theory for time-dependent zero-range potentials Annales De L Institut Henri Poincare-physique Theorique. ,vol. 40, pp. 343- 359 ,(1984)
Rudolf Gorenflo, Sergio Vessella, Abel integral equations ,(1990)