Molecular Evolution of the Herpesvirales

作者: Duncan J. McGeoch , Andrew J. Davison , Aidan Dolan , Derek Gatherer , Edgar E. Sevilla-Reyes

DOI: 10.1016/B978-0-12-374153-0.00020-5

关键词: AlloherpesviridaePhylogenetic treeHerpesviralesMalacoherpesviridaeGeneticsGammaherpesvirinaeMolecular evolutionBetaherpesvirinaeBiologyHerpesviridae

摘要: The herpesviruses are a group of large DNA viruses, originally defined by their characteristic virion structure. On the basis genome sequences they have been assigned to an order, Herpesvirales, containing three families: Herpesviridae, infecting mammals, birds and reptiles; Alloherpesviridae, amphibians fish; Malacoherpesviridae, populated only oyster virus. Viruses in Herpesviridae descended from common ancestor, as those but connections between families tenuous.The include eight human viruses. Three widely diverged subfamilies, Alpha -, Beta Gammaherpesvirinae, defined. A robust phylogenetic tree has constructed for this family, based on amino acid conserved genes. Within sub-families, aspects branching patterns resemble mammalian host lineages, indicating long-term co-evolution virus lines thus enabling inference timeframe tree. is estimated be about 400 million years depth. Some 40 genes across with recognized roles mainly capsid structure replication machinery. Functions non-conserved immune modulation latency. herpesvirus appear originated capture cellular genomes, others genesis de novo. Multigene common, notably Betaherpesvirinae. Aspects systems among complex arrangements initiation synthesis Gammaherpesvirinae part Betaherpesvirinae, disabling Betaherpesvirinae ofgenes nucleotide anabolism. Comparative genomic sequenc-ing isolates revealing novel recent evolution. Recombination strains emerged general phenomenon. Also, certain latent cycle gammaherpesviruses uniquely evince signs widespread diversifying selection. Genomic organizations theAlloherpes-viridae Malacoherpesviridae look gener-ally similar Alloherpesviridae also diverse.

参考文章(113)
J. Minarovits, Epigenotypes of latent herpesvirus genomes. Current Topics in Microbiology and Immunology. ,vol. 310, pp. 61- 80 ,(2006) , 10.1007/3-540-31181-5_5
John L. Yates, 26 Epstein-Barr Virus DNA Replication Cold Spring Harbor Monograph Archive. ,vol. 31, pp. 751- 773 ,(1996) , 10.1101/087969459.31.751
Charles W. Knopf, Evolution of Viral DNA-Dependent DNA Polymerases Virus Genes. ,vol. 16, pp. 47- 58 ,(1998) , 10.1023/A:1007997609122
Lynn J. Poole, Jian-Chao Zong, Dolores M. Ciufo, Donald J. Alcendor, Jennifer S. Cannon, Richard Ambinder, Jan M. Orenstein, Marvin S. Reitz, Gary S. Hayward, Comparison of Genetic Variability at Multiple Loci across the Genomes of the Major Subtypes of Kaposi’s Sarcoma-Associated Herpesvirus Reveals Evidence for Recombination and for Two Distinct Types of Open Reading Frame K15 Alleles at the Right-Hand End Journal of Virology. ,vol. 73, pp. 6646- 6660 ,(1999) , 10.1128/JVI.73.8.6646-6660.1999
M. S. Chee, A. T. Bankier, S. Beck, R. Bohni, C. M. Brown, R. Cerny, T. Horsnell, C. A. Hutchison, T. Kouzarides, J. A. Martignetti, E. Preddie, S. C. Satchwell, P. Tomlinson, K. M. Weston, B. G. Barrell, Analysis of the Protein-Coding Content of the Sequence of Human Cytomegalovirus Strain AD169 Current Topics in Microbiology and Immunology. ,vol. 154, pp. 125- 169 ,(1990) , 10.1007/978-3-642-74980-3_6
T A Cha, E Tom, G W Kemble, G M Duke, E S Mocarski, R R Spaete, Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. Journal of Virology. ,vol. 70, pp. 78- 83 ,(1996) , 10.1128/JVI.70.1.78-83.1996