Symmetries and their use

作者: Giuseppe Gaeta

DOI: 10.1007/978-94-011-1018-1_2

关键词: Symmetry (physics)Algebraic equationVector fieldHomogeneous spaceBoundary value problemMathematical physicsMathematicsSet (abstract data type)Differential equation

摘要: In this chapter we discuss how to determine the symmetry of a set differential equations; and once is done, these are useful in study equation itself. Again consider also case algebraic equations model discussion on these.

参考文章(25)
J. D. Crawford, M. Golubitsky, M. G. M. Gomes, E. Knobloch, I. N. Stewart, Boundary conditions as symmetry constraints Lecture Notes in Mathematics. pp. 63- 79 ,(1991) , 10.1007/BFB0085426
Pavel Winternitz, Conditional symmetries and conditional integrability for nonlinear systems Group Theoretical Methods in Physics. ,vol. 382, pp. 263- 271 ,(1991) , 10.1007/3-540-54040-7_117
Vladimir Igorevich Arnolʹd, Djilali Embarek, Les méthodes mathématiques de la mécanique classique in-house reproduction. ,(1976)
S.A. Samuel, STATISTICAL MECHANICS AND FIELD THEORY Lawrence Berkeley National Laboratory. ,(2010)
Richard Courant, David Hilbert, Methods of Mathematical Physics ,(1947)
John David Crawford, Surface waves in nonsquare containers with square symmetry Physical Review Letters. ,vol. 67, pp. 441- 444 ,(1991) , 10.1103/PHYSREVLETT.67.441
Peter A. Clarkson, Martin D. Kruskal, New similarity reductions of the Boussinesq equation Journal of Mathematical Physics. ,vol. 30, pp. 2201- 2213 ,(1989) , 10.1063/1.528613
D Levi, P Winternitz, Non-classical symmetry reduction: example of the Boussinesq equation Journal of Physics A. ,vol. 22, pp. 2915- 2924 ,(1989) , 10.1088/0305-4470/22/15/010