SQUID-sensor-based ultra-low-field MRI calibration with phantom images: towards quantitative imaging.

作者: Juhani Dabek , Panu T. Vesanen , Koos C.J. Zevenhoven , Jaakko O. Nieminen , Raimo Sepponen

DOI: 10.1016/J.JMR.2012.08.010

关键词: MagnetometerTransducerCalibrationSQUIDMagnetic resonance imagingElectromagnetPhysicsMagnetoencephalographyImaging phantomOpticsNuclear magnetic resonance

摘要: In ultra-low-field magnetic resonance imaging (ULF MRI), measured signals oscillate at Larmor frequencies around 1 kHz compared to even above 100 MHz in high-field MRI. Thus, detection by induction coils ULF MRI is not feasible, whereas superconducting quantum interference device (SQUID) sensors can measure these femtotesla-level signals. The signal-to-noise ratio enhanced prepolarization a field that typically 100-1000 times higher than the during acquisition. Based on both measurements and simulations, procedure for calibrating SQUID-sensor-based system with MR images presented this article. Magnetoencephalography (MEG) be integrated MRI, may also benefit from such calibration procedure. Conventionally, electromagnet probe have been used SQUID-sensor MEG; ULF-MRI-based approach using an phantom could replace hybrid MEG-MRI or alone. necessary theory provided here experimental verification. opens possibility of performing quantitative without sample-specific reference scans.

参考文章(23)
Paul C. Lauterbur, Zhi-Peng Liang, Principles of magnetic resonance imaging : a signal processing perspective SPIE Optical Engineering Press. ,(2000)
Panu T. Vesanen, Jaakko O. Nieminen, Koos C. J. Zevenhoven, Juhani Dabek, Lauri T. Parkkonen, Andrey V. Zhdanov, Juho Luomahaara, Juha Hassel, Jari Penttilä, Juha Simola, Antti I. Ahonen, Jyrki P. Mäkelä, Risto J. Ilmoniemi, Hybrid ultra-low-field MRI and magnetoencephalography system based on a commercial whole-head neuromagnetometer Magnetic Resonance in Medicine. ,vol. 69, pp. 1795- 1804 ,(2013) , 10.1002/MRM.24413
J Nurminen, S Taulu, Y Okada, Effects of sensor calibration, balancing and parametrization on the signal space separation method. Physics in Medicine and Biology. ,vol. 53, pp. 1975- 1987 ,(2008) , 10.1088/0031-9155/53/7/012
Whittier R. Myers, Michael Mößle, John Clarke, Correction of concomitant gradient artifacts in experimental microtesla MRI Journal of Magnetic Resonance. ,vol. 177, pp. 274- 284 ,(2005) , 10.1016/J.JMR.2005.08.003
C. H. Tseng, G. P. Wong, V. R. Pomeroy, R. W. Mair, D. P. Hinton, D. Hoffmann, R. E. Stoner, F. W. Hersman, D. G. Cory, R. L. Walsworth, Low-field MRI of laser polarized noble gas. Physical Review Letters. ,vol. 81, pp. 3785- 3788 ,(1998) , 10.1103/PHYSREVLETT.81.3785
A.N. Matlachov, H.J. Sandin, A.V. Urbaitis, P.L. Volegov, M.A. Espy, J.C. Mosher, S.G. Newman, R.H. Kraus, V.S. Zotev, Multi-Channel SQUID System for MEG and Ultra-Low-Field MRI IEEE Transactions on Applied Superconductivity. ,vol. 17, pp. 839- 842 ,(2007) , 10.1109/TASC.2007.898198
P. T. Vesanen, J. O. Nieminen, K. C. J. Zevenhoven, J. Dabek, J. Simola, J. Sarvas, R. J. Ilmoniemi, The Spatial and Temporal Distortion of Magnetic Fields Applied Inside a Magnetically Shielded Room IEEE Transactions on Magnetics. ,vol. 48, pp. 53- 61 ,(2012) , 10.1109/TMAG.2011.2167627
N Sergeeva-Chollet, H Dyvorne, J Dabek, Q Herreros, H Polovy, G Le Goff, G Cannies, M Pannetier-Lecoeur, C Fermon, Low field MRI with magnetoresistive mixed sensors Journal of Physics: Conference Series. ,vol. 303, pp. 012055- ,(2011) , 10.1088/1742-6596/303/1/012055
H Griffiths, Magnetic induction tomography Measurement Science and Technology. ,vol. 12, pp. 1126- 1131 ,(2001) , 10.1088/0957-0233/12/8/319